Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (КИ)
Шрифт:

Кислородная терапия

Кислоро'дная терапи'я, оксигенотерапия (от латинского Oxygenium — кислород и терапия ), искусственное введение кислорода в организм человека с лечебной целью. К. т. применяют обычно для лечения заболеваний, сопровождающихся гипоксемией (болезни сердечно-сосудистой системы; пневмонии, эмфизема лёгких; высотная болезнь; отравление удушающими газами — хлором, фосгеном и др.), а также при лечении некоторых гнойно-гнилостных процессов мягких тканей (например, гангрена) и др. Для К. т. применяют как чистый кислород, так и смесь его с воздухом или с двуокисью углерода (5—7%), так называемый карбоген. Кислород вводят в организм ингаляционным путем, подкожно, внутрибрюшинно, через кишечник (для изгнания глистов) и т.д. Для К. т. используют катетеры, маски, кислородные подушки, специальные ингаляторы, кислородные палатки и тенты. Применяют также лечение кислородом под повышенным давлением — гипербарическую оксигенацию .

Кислородно-дыхательная аппаратура

Кислоро'дно-дыха'тельная аппарату'ра,

приборы для проведения кислородной терапии . Простейшим из них является кислородная подушка — прорезиненный мешок (ёмкость 12—16 л), наполненный кислородом и снабженный резиновой трубкой с краном и мундштуком. Применяют носовые катетеры или пластмассовые трубки, которые надевают на два ответвления тройника, третий конец которого подсоединён к любому источнику кислорода. Катетеры вводят по нижнему носовому ходу, кислород через увлажнитель подают со скоростью 2—3 л/мин . Дыхательные маски представляют собой металлические или пластмассовые капсулы, изогнутые так, чтобы при наложении на лицо покрывать ротовое отверстие и нос. Маски имеют вдыхательные и выдыхательные клапаны, позволяющие регулировать скорость подачи кислорода. Катетеры или маски являются неотъемлемой частью кислородных ингаляторов, состоящих из металлического баллона (или нескольких соединённых между собой баллонов), в котором находится кислород под давлением 150 атм, и редуктора, снабженного двумя манометрами. Переносные кислородные ингаляторы имеют ёмкость от 0,7 до 1,5 л . Баллонами большой емкости снабжают ингаляторы, предназначенные для горноспасательных станций, пожарных автомобилей и т.д., а также для стационарных установок в больницах. При палаточном методе кислородной терапии палатка или тент из не пропускающего газ материала подвешивается на специальном держателе над изголовьем постели. Тент снабжен окнами из плексигласа; держатель тента, баллоны с кислородом и редуктор размещают на металлической площадке. Кислород поступает в подпалаточное пространство со скоростью 6—8 л/мин. Воздушная смесь этого пространства насосом непрерывно прогоняется через регенератор, в котором содержится поглотитель углекислоты и резервуар со льдом для охлаждения воздуха и удаления излишней влаги. Концентрация кислорода в подпалаточном пространстве держится на уровне 60—80%, температура и влажность соответствуют зоне комфорта.

Рис. 2. Кислородная палатка (вид сбоку): 1 — тент; 2 — петли; 3 — штанга; 4 и 5 — консоли для установки тента; 6 — газоанализатор для контроля содержания O2 и CO2 в подпалаточном пространстве; 7 — вентиляционная труба; 8 — гайки крепления; 9 — окна из плексигласа; 10 — редуктор; 11 — резервуар с мотором, вентилятором, сосудом с поглотителем углекислоты и для льда; 12 — приёмник воды, образующейся при таянии льда.

Рис. 1. Кислородный ингалятор: 1 — баллон с кислородом; 2 — редуктор с манометрами; 3 — инжектор; 4 — дыхательный мешок; 5 — предохранительный клапан; 6 — маска; 7 — выдыхательный клапан.

Кислородное голодание

Кислоро'дное голода'ние, кислородная недостаточность, состояние организма, характеризующееся тем, что поступление O2 к тканям и органам или их способность утилизировать O2 ниже потребностей животного или человека в кислороде; то же, что гипоксия .

Кислородно-конвертерная сталь

Кислоро'дно-конве'ртерная ста'ль, сталь, выплавляемая в кислородных конвертерах; см. Сталь .

Кислородно-конвертерный процесс

Кислоро'дно-конве'ртерный проце'сс, один из видов передела жидкого чугуна в сталь без затраты топлива путём продувки чугуна в конвертере технически чистым кислородом сверху. О целесообразности использования кислорода при производстве стали в конвертерах указывал ещё в 1876 русский металлург Д. К. Чернов . Впервые применил чистый кислород для продувки жидкого чугуна снизу советский инженер Н. И. Мозговой в 1936. В 1939—41 на Московском заводе станкоконструкций проводились опыты по продувке чугуна сверху кислородом в 1,5-т ковше и выплавлялась сталь для фасонного литья. Впервые К.-к. п. был опробован в промышленном масштабе в Австрии в 1952. Первый кислородно-конвертерный цех в СССР был введён в эксплуатацию в Днепропетровске на металлургическом заводе им. Петровского в 1956.

К.-к. п. осуществляется в конвертере с основной смолодоломитовой (доломит, смешанный со смолой) футеровкой и с глухим дном; кислород под давлением более 1 Мн/м2 (10 кгс/см2 ) подаётся водо-охлаждаемой фурмой через горловину конвертера. С целью образования основного шлака, связывающего фосфор, в конвертер в начале продувки добавляют известь. Под воздействием дутья примеси чугуна (кремний, марганец, углерод и др.) окисляются, выделяя значительное количество тепла, в результате чего одновременно снижается содержание примесей в металле и повышается температура, поддерживая его в жидком состоянии. Когда содержание углерода достигает требуемого значения (количество углерода определяется по времени от начала продувки и по количеству израсходованного кислорода), продувку прекращают и фурму извлекают из конвертера. Продувка обычно длится 15—22 мин. Полученный металл содержит в растворе избыток кислорода, поэтому заключительная стадия плавки — раскисление металла . Течение К.-к. п. (т. е. последовательность реакций окисления примесей

чугуна) обусловливается температурным режимом процесса и регулируется изменением количества дутья или введением в конвертер «охладителей» (скрапа , железной руды, известняка). Температура металла при выпуске около 1600 °С. На приведена схема получения стали в кислородном конвертере.

Применение при конвертировании кислородного дутья вместо воздушного (см. Бессемеровский процесс , Томасовский процесс ) позволило получать сталь с низким содержанием азота (0,002—0,006%). Высокая температура К.-к. п. способствует интенсивному окислению углерода, поэтому содержание кислорода, растворенного в металле, снижается до 0,005—0,01%. Расход кислорода на 1 т чугуна при К.-к. п. составляет » 53 м3 . При одном и том же качестве стали К.-к. п. по сравнению с мартеновским (см. Мартеновское производство ) даёт экономию по капиталовложениям на 20—25%, снижение себестоимости стали на 2—4% и увеличение производительности труда на 25—30%. В СССР за 1965—71 выплавка стали в кислородных конвертерах увеличена с 4 до 23,2 млн. т в год, или в 5,8 раза. Рост производства конвертерной стали сопровождается ростом ёмкости конвертеров. С технологической точки зрения, увеличение емкости конвертера не создает каких-либо дополнительных трудностей ведения плавки. Поэтому даже в крупных конвертерах выплавляют не только рядовую низкоуглеродистую сталь, но и среднеуглеродистую, высокоуглеродистую, низколегированную и легированную стали.

Лит.: Применение кислорода в конвертерном производстве стали, М., 1959; Туркенич Д. И., Автоматизация процесса плавки в кислородном конвертере, [М.], 1966: Бережинский А. И., Хомутинников П. С., Утилизация, охлаждение и очистка конвертерных газов, М., 1967; Явойский В. И., Теория процессов производства стали, 2 изд., М.. 1967; Конвертерные процессы производства стали, М., 1970.

С. Г. Афанасьев.

Схема получения стали в кислородном конвертере: а — загрузка металлолома; б — заливка чугуна; в — продувка; г — выпуск стали; д — слив шлака.

Кислородный конвертер

Кислоро'дный конве'ртер. см. Конвертер .

Кислородный эффект

Кислоро'дный эффе'кт в радиобиологии, защитное действие пониженного содержания кислорода (гипоксии ) при облучении живых организмов ионизирующей радиацией. К. э. проявляется у всех биологических объектов (микроорганизмы, растения, животные) и на всех уровнях их организации (субклеточном, клеточном, тканевом, органном и организменном), значительно ослабляя все радиобиологические реакции (биохимические нарушения, мутации , угнетение роста и развития) и повышая выживаемость облученных организмов. Механизм защитного действия гипоксии объясняется тем, что при облучении в присутствии кислорода образуются перекисные радикалы, усиливающие действие излучений на жизненно важные макромолекулы и структуры клеток и (или) ослабляющие эффективность внутриклеточных защитных веществ. Величина К. э. зависит главным образом от вида радиации и условий облучения. Наибольший К. э. наблюдается при действии рентгеновских лучей и гамма-лучей; с ростом плотности ионизации К. э. уменьшается, а при действии наиболее плотно ионизирующих излучений (например, альфа-лучей) практически отсутствует. В нормально обводненных активно жизнедеятельных биологических объектах ослабление лучевого поражения имеет место только при применении гипоксии во время облучения, в сухих объектах (покоящиеся семена растений, споры бактерий) — и при гипоксии после облучения, во время перехода облученных объектов к активной жизнедеятельности (например, при проращивании семян). К. э. находит применение в лучевой терапии : повышая содержание кислорода в опухоли и создавая гипоксические условия в окружающих тканях, можно усиливать лучевое поражение опухолевых клеток, одновременно уменьшая повреждение здоровых тканей.

Лит.: Кислородный эффект при действии ионизирующих излучений, М., 1959; Бак З., Александер П., Основы радиобиологии, пер. с англ., М., 1963.

В. И. Иванов.

Кислотность почвы

Кисло'тность по'чвы, одно из важнейших свойств многих почв, обусловленное наличием водородных ионов в почвенном растворе, а также обменных ионов водорода и алюминия в почвенном поглощающем комплексе. Повышенная К. п. отрицательно влияет на развитие растений и многих полезных микроорганизмов. Различают 2 формы К. п.: актуальную, или активную, — кислотность почвенного раствора, почвенной суспензии или водной вытяжки из почв, и потенциальную, или пассивную, «скрытую», — кислотность твёрдой фазы почвы. Актуальная К. п. обусловлена наличием ионов водорода. Выражается условной величиной pH (отрицательный логарифм концентрации водородных ионов); при pH 7 реакция почвенного раствора нейтральная, ниже 7 — кислая; чем ниже числовое значение рН, тем выше К. п. Потенциальную К. п. делят на обменную и гидролитическую. Обменная К. п. вызывает значительное подкисление почвенного раствора при взаимодействии почвы с нейтральной солью, что наблюдается при внесении физиологически кислых удобрений (хлористый калий, сернокислый аммоний и др.). По представлениям русского учёного К. К. Гедройца и некоторых других исследователей, обменная К. п. обусловлена присутствием в твердой фазе почвы ионов водорода, не вытесняемых нейтральными солями из поглощаемого комплекса, но способных к замещению (обмену) на другие катионы при обработке почвы растворами щелочей или гидролитически щелочных солей (например, раствором ацетата натрия, который и применяется при определении гидролитической кислотности). Степень К. п. необходимо учитывать при выборе минеральных удобрений, подготовке их перед внесением в почву. Основной способ борьбы с повышенной К. п. — известкование почв .

Поделиться:
Популярные книги

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Восход. Солнцев. Книга IX

Скабер Артемий
9. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга IX

Система Возвышения. Второй Том. Часть 1

Раздоров Николай
2. Система Возвышения
Фантастика:
фэнтези
7.92
рейтинг книги
Система Возвышения. Второй Том. Часть 1

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Последний Паладин. Том 8

Саваровский Роман
8. Путь Паладина
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Последний Паладин. Том 8

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Война

Валериев Игорь
7. Ермак
Фантастика:
боевая фантастика
альтернативная история
5.25
рейтинг книги
Война

В ожидании осени 1977

Арх Максим
2. Регрессор в СССР
Фантастика:
альтернативная история
7.00
рейтинг книги
В ожидании осени 1977

Кровь, золото и помидоры

Распопов Дмитрий Викторович
4. Венецианский купец
Фантастика:
альтернативная история
5.40
рейтинг книги
Кровь, золото и помидоры

Последний реанорец. Том I и Том II

Павлов Вел
1. Высшая Речь
Фантастика:
фэнтези
7.62
рейтинг книги
Последний реанорец. Том I и Том II

Кодекс Охотника. Книга III

Винокуров Юрий
3. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Кодекс Охотника. Книга III

Помещица Бедная Лиза

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Помещица Бедная Лиза

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание