Большая Советская Энциклопедия (ЛИ)
Шрифт:
К Л. п. относится, в частности, нулевое Л. п. О, переводящее все векторы в 0 (нулевой вектор) : Ox = и единичное Л. п. Е, оставляющее все векторы без изменения: Ex = х; этим Л. и. в любой системе координат соответствуют нулевая и единичная матрицы.
Для Л. п. векторного пространства естественным образом определяются операции сложения и умножения: суммой двух Л. п. А и В называют Л. п. С, переводящее любой вектор х в вектор Cx = Ax + Вх; произведением Л. п. А и В называют результат их последовательного применения: С = AB, если Cx = А(Вх).
В силу этих определений совокупность всех Л. п. векторного пространства образует кольцо. Матрица суммы (произведения) Л. п. равна сумме (произведению) матриц Л. п. слагаемых (сомножителей); при этом существен порядок множителей, так как произведение Л. и., как и матриц, не обладает свойством коммутативности. Л. п. можно также умножать на числа: если Л. п. А переводит вектор х
Л. п. В называют обратным к Л. п. А (и обозначают А– 1), если BA = Е (или AB = Е). Если Л. п. А переводило вектор х в вектор у, то Л. п. А– 1 переводит у обратно в х. Л. п., обладающее обратным, называют невырожденным; такие Л. п. характеризуются также тем, что определитель их матрицы не равен нулю. Некоторые классы Л. п. заслуживают особого упоминания. Обобщением поворотов двумерных и трёхмерных евклидовых пространств являются ортогональные (или унитарные — в комплексных пространствах) Л. п. Ортогональные Л. п. не изменяют длин векторов (а следовательно, и углов между ними). Матрицы этих Л. п. в ортонормированной системе координат также называются ортогональными (унитарными): произведение ортогональной матрицы на её транспонированную даёт единичную матрицу: akaikajk = akakiakj = 0 при i ¹ j, aka2ik = aka2ki = 1 (в комплексном пространстве akaik
Приведённое выше определение Л. п. в векторном пространстве, не использующее координатную систему, без всяких изменений распространяется и на бесконечномерные (в частности, функциональные) пространства. Л. п. в бесконечномерных пространствах принято называть линейными операторами.
Лит.: Александров П. С., Лекции по аналитической геометрии..., М., 1968; Мальцев А. И., Основы линейной алгебры, 3 изд., М., 1970; Ефимов Н. В., Розендорн Э. P., Линейная алгебра и многомерная геометрия, М., 1970.
Линейное программирование
Лине'йное программи'рование, математическая дисциплина, посвященная теории и методам решения задач об экстремумах линейных функций на множествах, задаваемых системами линейных неравенств и равенств; Л. п. является одним из разделов математического программирования.
Типичным представителем задач Л. п. является следующая: найти максимум линейной функции
при условиях
xj³ 0, j = 1, 2, n, (3)
где cj, aij и bi — заданные величины.
Задачи Л. п. являются математическими моделями многочисленных задач технико-экономического содержания. Рассмотрим в качестве примера следующую задачу планирования работы предприятия. Для производства однородных изделий необходимо затратить различные производственные факторы — сырьё, рабочую силу, станочный парк, топливо, транспорт и т. д. Обычно имеется несколько отработанных технологических способов производства, причём в этих способах затраты производственных факторов в единицу времени для выпуска изделий различны. Количество израсходованных производственных факторов и количество изготовленных изделий зависит от того, сколько времени предприятие будет работать по тому или иному технологическому способу. Ставится задача рационального распределения времени работы
означает общий расход i-го производственного фактора при плане х(i) = (x(i)1, x(i)2, ..., x(i)n). И поскольку ресурсы ограничены величинами bi, то возникают естественные условия (2) и (3). Ставится задача отыскания такого распределения времени (оптимального плана) х* = (x*1, х*2, ..., х* n) работы по каждому технологическому способу, при котором общий объём продукции
Термин «Л. п.» нельзя признать удачным, однако смысл его в том, что в Л. п. решаются задачи составления оптимальной программы (плана) действий. В связи с этим Л. п. можно рассматривать как один из математических методов в исследованиях операций (см. Операций исследование).
Функцию (1) в Л. п. принято называть целевой функцией, или критерием эффективности, вектор х = (x1, x2, ..., xn) — планом, вектор x*=(x*1, x*2, ..., x*n) — оптимальным планом, а множество, определяемое условиями (2) — (3), — допустимым, или множеством планов. Одним из основных методов решения задач Л. п. является симплексный метод. Геометрически его идея состоит в следующем. Допустимое множество (2) — (3) представляет собой выпуклое многогранное множество (если оно ограничено, то — многомерный выпуклый многогранник). Если задача Л. п. имеет решение, то существует вершина х* многогранного множества, являющаяся оптимальным планом. Симплексный метод состоит в таком направленном переборе вершин, при котором значение целевой функции возрастает от вершины к вершине. Каждой вершине соответствует система уравнений, выбираемая спец. образом из системы неравенств (2) — (3), поэтому вычислительная процедура симплексного метода состоит в последовательном решении систем линейных алгебраических уравнений. Простота алгоритма делает этот метод удобным для его реализации на ЭВМ.
Лит.: Юдин Д. Б., Гольштейн Е. Г., Линейное программирование, М., 1969.
В. Г. Карманов.
Линейное пространство
Лине'йное простра'нство, тоже, что векторное пространство. В функциональном анализе рассматриваются главным образом бесконечномерные пространства. Примером бесконечномерного Л. п. может служить пространство всех многочленов (с вещественными или комплексными коэффициентами) при обычном определении сложения и умножения на числа. Одним из первых примеров бесконечного Л. п. были гильбертово пространствои пространство С [а, b] непрерывных функций, заданных на отрезке [а, b]. Эти пространства являются нормированными, т. е. такими Л. п., в которых введена норма элемента х — неотрицательное число
В конечномерном пространстве различные нормы топологически равносильны: последовательность точек, сходящихся при одной норме, сходится и при любой другой. В бесконечномерных пространствах нормы могут быть существенно различны. Например, при решении задачи П. Л. Чебышева о разыскании многочлена, наименее уклоняющегося от нуля (задачи о наилучшем приближении), надо найти такой многочлен (k — 1)-й степени Pk-i(t), чтобы