Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (ЛИ)
Шрифт:
], находят следующее приближение x3 и т. д. Общая формула Л. и. м. имеет вид

, (n = 2, 3, ...).

Др. названия Л. и. м.: метод хорд, метод секущих и (устаревшее) правило ложного положения (Regula faisi).

Лит.: Березин И. С.. Жидков Н. П., Методы вычислений, 2 изд., т. 2, М., 1962.

Рис. к ст. Линейного интерполирования метод.

Линейное письмо

Лине'йное письмо' А и Б, древнейшие письменности о. Крита. В текстах, выполненных

Л. п. Б (крито-микенским слоговым письмом), засвидетельствован один из диалектов древнегреческого языка. Надписи, датируемые 15—14 вв. до н. э. и найденные в конце 19 в. на о. Крите, были впервые опубликованы английским учёным А. Эвансом в 1909. В 1939 в южной части Пелопоннеса были найдены таблички с такими же надписями, относящимися примерно к 13 в. до н. э. Дешифровка Л. п. Б принадлежит английским учёным М. Вентрису и Дж. Чедвику (1953). Знаки крито-микенского письма, соответствующие отдельным гласным или группам, состоящим из согласного с последующим гласным, по мнению некоторых учёных, были, очевидно, заимствованы и приспособлены к нуждам греческого языка. Некоторые знаки совпадают со знаками кипрского слогового письма (6—2 вв. до н. э.) и Л. п. А, которое датируется примерно 18—15 вв. до н. э. Не поддающееся дешифровке Л. п. А, по всей вероятности, не является индоевропейским (см. Критское письмо).

Лит.: Георгиев В., Словарь крито-микенских надписей, София, 1955; Лурье С. Я., Язык и культура микенской Греции, М., 1957; Furumark A., Linear A und die altkretische Sprache, B., 1956; Meriggi P., Primi elementi di minoico A, Salamanca. 1956; Sundwall J., Minoische Beitr"age, «Minos», 1955, № 3, 1956, № 4; Chadwick J., Ventris M Studies in Mycenaean inscriptions and dialect, L., 1956; их же, Documents in Mycenaean Greek, Camb., 1956; «Minoica», B., 1958; Peruzzi E., Le iscrizioni minoiche, Firenze, 1960.

М. Л. Воскресенский.

Линейное преобразование

Лине'йное преобразова'ние переменных x1, x2, ..., xn — замена этих переменных на новые x'1, x’2, ..., x'n, через которые первоначальные переменные выражаются линейно, т. е. по формулам:

x1 = a11x’1 + a12x’2 + ... + annx’n + b1,

x2 = a21x’1 + a22x’2 + ... + a2nx’n + b2,

...

xn = an1x’1 + an2x’2 + ... + annx’n + bn,

здесь aijи bi(i, j = 1,2, ..., n) — произвольные числовые коэффициенты. Если b1, b2,..., bn все равны нулю, то Л. п. переменных называют однородным.

Простейшим примером Л. п. переменных могут служить формулы преобразования прямоугольных координат на плоскости

х = x' cos a– y' sin a + a,

у = x' sin a + y' cos a + b.

Если определитель D = ½aij½, составленный из коэффициентов при переменных, не равен нулю, то можно и новые переменные x'1, x'2, ..., x'n

линейно выразить через старые. Например, для формул преобразования прямоугольных координат

 

и

x’ =x cos a + ysin a + a1

y’ = -x sin a + cos a + b1

где a1 = - a cos a– b sin a, b2 = a sin a– b cos (. Другими примерами Л. п. переменных могут служить преобразования аффинных и однородных проективных координат, замена переменных при преобразовании квадратичных форм и т. п.

Л. п. векторов (или Л. п. векторного пространства) называют закон, по которому вектору х из n– мерного пространства ставят в соответствие новый вектор x', координаты которого линейно и однородно выражаются через координаты вектора х:

x’1 = a11x1 + a12x2 + ... +a1nxn

x’2 = a21x1 + a22x2 + ... +a2nxn

...

x’n = an1x1 + an2x2 + ... +annxn,

или коротко

x' = Ax.

Например, операция проектирования на одну из координатных плоскостей (пусть на плоскость хОу) будет Л. п. трёхмерного векторного пространства: каждому вектору а с координатами х, у, z сопоставляется новый вектор b, координаты x', y'., z' которого выражаются через х, у, z следующим образом : x' = х, y' = у, z' = 0. Пример Л. п. плоскости — поворот её на угол a вокруг начала координат. Матрицу

,

составленную из коэффициентов Л. п. А, называют его матрицей. Матрицами приведённых выше Л. п. проектирования и поворота будут соответственно

 и
.

Л. п. векторного пространства можно определить (как обычно поступают) без использования системы координат: соответствие х®у = Ax называют Л. п., если выполняются условия А(х + у) = Ax + Ау и A(ax) = aА(х) для любых векторов х и у и любого числа a. В разных системах координат одному и тому же Л. п. будут соответствовать разные матрицы и, следовательно, разные формулы для преобразования координат.

Поделиться:
Популярные книги

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

Маяк надежды

Кас Маркус
5. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Маяк надежды

Великий перелом

Ланцов Михаил Алексеевич
2. Фрунзе
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Великий перелом

Сопротивляйся мне

Вечная Ольга
3. Порочная власть
Любовные романы:
современные любовные романы
эро литература
6.00
рейтинг книги
Сопротивляйся мне

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Падение Твердыни

Распопов Дмитрий Викторович
6. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Падение Твердыни

"Дальние горизонты. Дух". Компиляция. Книги 1-25

Усманов Хайдарали
Собрание сочинений
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Дальние горизонты. Дух. Компиляция. Книги 1-25

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6