Большая Советская Энциклопедия (ЛИ)
Шрифт:
Лит.: Knuth I., Electrische Maschinen mit geradliniger Bewegung und ihre technische Anwendung, «Electro-Praktiker», 1969, № 1.
Ю. М. Иньков.
Линейный корабль
Лине'йный кора'бль, линкор, 1) в парусном военном флоте 17—1-й половине 19 вв. крупный по размерам трёхмачтовый боевой корабль с 2—3 артиллерийскими палубами (деками); имел от 60 до 135 орудий, устанавливавшихся по бортам в линию и до 800 человек экипажа. Вёл бой, находясь в кильватерной колонне (линии баталии), отчего и получил своё название, перешедшее по традиции к кораблям парового флота.
2) В паровом броненосном флоте один из основных классов самых крупных по размерам артиллерийских надводных кораблей, предназначенных для уничтожения в морском бою кораблей всех классов, а также нанесения мощных артиллерийских
Б. Ф. Балев.
Линейный корабль «Айова» (США). 1943.
Линейный крейсер
Лине'йный кре'йсер, подкласс крейсеров с мощным артиллерийским вооружением, появившийся перед 1-й мировой войной 1914—18. Было построено лишь несколько Л. к., имели водоизмещение от 20 до 42 тыс. т, вооружение — 6—9 башенных орудий калибра 280—380 мм, до 20 113-мм орудий, скорость хода 29—30 узлов (53,7—55,5 км/ч). Л. к. применялись в 1-й мировой войне, а три из оставшихся в ВМС Великобритании и во 2-й мировой войне 1939—45. После войны последний уцелевший Л. к. был сдан на слом.
Линейный оператор
Лине'йный опера'тор, обобщение понятия линейного преобразования на линейные пространства. Линейным оператором F на линейном пространстве Е называют функцию F(x), определённую для всех х ^I Е, значения которой суть элементы линейного пространства E1, и обладающую свойством линейности:
F((x + (у) = (F(x) + (F(y),
где х и у — любые элементы из Е, a и b — числа. Если пространства Е и E1 нормированы и величина
Важнейшими конкретными примерами Л. о. в функциональных пространствах являются дифференциальные Л. о.
и интегральные Л. о.
примером Л. о. функций многих переменных может служить Лапласа оператор. Теория Л. о. находит большое применение в различных вопросах математической физики и прикладной математики. См. также Функциональный анализ,Операторов теория, Спектральный анализ(математический), Собственные значения и собственные функции, Собственные векторы.
Линейный функционал
Лине'йный функциона'л, обобщение понятия линейной формы на линейные пространства. Линейным функционалом f на линейном нормированном пространстве Е называют числовую функцию f(x), определённую для всех х из Е и обладающую следующими свойствами:
1) f(x) линейна, т. е. f((x + (у) = (f(x) + (f(y),
где х и у — любые элементы из Е, a и b — числа;
2) f(x) непрерывна.
Непрерывность f равносильна требованию, чтобы
В пространстве С [a, b] функций a(t), непрерывных при a ( t ( b, с нормой
f2[((t)] = ((t), a ( t( b.
В гильбертовом пространствеН Л. ф. суть скалярные произведения (l, х), где l — любой фиксированный элемент пространства Н; ими исчерпываются все Л. ф. этого пространства.
Во многих задачах можно из общих соображений установить, что та или иная величина является Л. ф. Например, к Л. ф. приводит решение линейных дифференциальных уравнений с линейными краевыми условиями. Поэтому очень существенным является вопрос об общем аналитическом выражении Л. ф. в разных пространствах.
Совокупность всех Л. ф. данного пространства Е превращается в линейное нормированное пространство