Большая Советская Энциклопедия (ЛИ)
Шрифт:
Р = j (t), a lb t lb b
P = j1(t1), a1lb t1lb b1,
изображали одну и ту же Л., заключается в существовании непрерывной и строго возрастающей функции
t1 = f(t),
для
f(a) = a1, f(b) = b1, j (t) = j1[f(t)].
Такое понимание термина «Л.» наиболее естественно в большинстве вопросов анализа (например, в теории криволинейных интегралов) и механики. Так как Л. здесь рассматривается вместе с порядком, в котором пробегает её точки переменная точка М при возрастании t, то при этом естественно возникает вопрос о числе прохождений переменной точки Л. через какую-либо точку пространства. Кроме простых точек, проходимых один раз, Л. может иметь кратные точки, которые проходятся несколько раз (отвечающие различным значениям параметра).
Например, при изменении t в пределах — yen < t < yen точка с координатами
описывает строфоиду (см. рис. «Алгебраические кривые третьего порядка», № 5), попадая в положение х = 0, у = 0 два раза при t = — 1 и t = + 1.
3) Из аналитической геометрии известен и другой способ задания Л. на плоскости уравнением
F(x, y) = 0;
в пространстве — двумя уравнениями
F(x, у, z) = 0, G(x, y, z) = 0.
Ограничиваясь случаем плоскости, укажем лишь, как строится понятие алгебраической Л. (кривой) — Л., определяемой уравнением
F(x, y) = 0,
где F(x, у) —целая алгебраическая функция, т. е. многочлен како-либо степени n ³ 1. В этом случае считают, что два многочлена F1(x, у) и F2(x, у) определяют одну и ту же алгебраическую Л. в том и только в том случае, когда существует такая постоянная с ¹ 0, что выполняется тождественно соотношение
F1(x, y) = cF2(x, у).
Таким образом, все многочлены, определяющие одну и ту же Л., имеют одну и ту же степень n, называемую порядком соответствующей Л. Например, в аналитической геометрии принято считать, что уравнение
(х - у)2 = 0
определяет Л. второго порядка, а именно, дважды взятую прямую х — у = 0.
В связи с последним примером необходимо заметить, однако, что часто целесообразно ограничиваться рассмотрением неприводимых алгебраических Л., т. е. таких Л., для которых многочлен не допускает представления F = GH, где G и Н — отличные от постоянных многочлены. Далее, в пункте 4, имеется в виду только этот случай.
Говорят, что точка (x, y) кривой F(x, у) = 0 имеет кратность m, если разложение F (x, у) по степеням x = х — x, h = у — y начинается с членов степени m (по совокупности переменных x и h). В случае m = 2, т. е. в случае двойной точки
F(x, у) = а11(х — x)2 + 2а12(х — x) (у — y) + a22(y — y)2 + ...,
где многоточие означает, что далее следуют члены высших порядков. При помощи дискриминанта
d = a11a22 — а122
можно определить тип двойной точки (см. Особые точки).
4) Часто, особенно при изучении алгебраической Л., целесообразно стать на точку зрения комплексной проективной геометрии, т. е. рассматривать, наряду с точками евклидовой действительной плоскости (или пространства), точки бесконечно удалённые и мнимые. Только при таком подходе (и надлежащем учёте кратности пересечения) становится верным, например, утверждение, что две Л. порядков n и m пересекаются в mn точках. В случае m = 1 это приводит к возможности определить порядок Л. как число n точек её пересечения с прямой.
С проективной точки зрения естественно задавать Л. на плоскости однородным уравнением
F(x1, x2, x3) = 0
между однородными координатами x1, x2, x3 её точек. В силу принципа двойственности с этим заданием равноправно задание Л. уравнением
F(x1, x2, x3) = 0,
связывающим однородные координаты прямых, касающихся Л. Таким образом, наряду с порядком Л. (степенью уравнения F = 0) естественно возникает понятие класса Л. — степени уравнения F = 0. Класс алгебраических Л. можно также определить как число касательных, которые можно провести к Л. из произвольной точки. О параметрическом представлении Л. см. также Уникурсальные кривые.
5) Рассмотренные выше (в пунктах 2—4) уточнения и обобщения понятия Л. существенно связаны с соответствующим алгебраическим и аналитическим аппаратом. В отличие от этого, современная топология выдвинула задачу уточнения представления о Л. как о множестве точек, независимо от алгебраического или аналитического способов задания этого множества.
Если исходить из параметрического задания Л. в виде непрерывной функции P = j (t), где t пробегает отрезок а lb t lb b, но интересоваться только полученным множеством точек без учёта порядка их следования, то приходят к понятию Л., сформулированному в 80-x гг. 19 в. К. Жорданом (см. Жордана кривая). Оказывается, что таким непрерывным образом отрезка может быть любой локально связный континуум, в частности квадрат, треугольник, куб и т. п. (см. Пеано кривая). Поэтому теперь обычно предпочитают говорить не о Л. в смысле Жордана, а о локально связных, или жордановых, континуумах. Взаимно однозначный непрерывный образ отрезка называют простой дугой, или жордановой дугой. Взаимно однозначный непрерывный образ окружности называют простой замкнутой Л. Простые дуги и простые замкнутые Л. не исчерпывают, однако, точечных множеств, заслуживающих наименования Л.