Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (ПЛ)
Шрифт:

В СССР становление промышленности П. м. как самостоятельной отрасли относится к периоду довоенных пятилеток (1929—40). Производство пластмасс составило (в тыс. т): в 1940 — 24, в 1950 — 75, в 1960 — 312, в 1970 — 1673, в 1973 — около 2300. Основные предприятия сосредоточены в Европейской части (84% общесоюзного производства П. м.). К их числу относятся орехово-зуевский завод «Карболит», Казанский завод органического синтеза, Полоцкий химический комбинат, Свердловский завод пластмасс, Владимирский химический завод, Горловский химический комбинат, Московский нефтеперерабатывающий завод. В перспективе в связи с созданием крупнейших Томского и Тобольского нефтехимических комплексов на базе Тюменских нефтяных месторождений, развитием Омского нефтехимического комплекса и соответствующих заводов пластмасс около 30% их производства будет приходиться на восточные районы. Основные действующие предприятия в этих районах — кемеровский завод «Карболит», Тюменский завод пластмасс.

Производство П. м. в 1973 в некоторых капиталистических промышленно развитых странах характеризуется следующими данными (в тыс. т): США — 13200, Япония — 6500, ФРГ — 6500, Франция — 2500, Италия — 2300, Великобритания — 1900.

В 1973 мировое производство полимеров для П. м. достигло ~ 43 млн. т. Из них около 75% приходилось на долю термопластов (25% полиэтилена, 20% поливинилхлорида, 14% полистирола и его производных, 16% прочих пластиков). Существует тенденция к дальнейшему увеличению доли термопластов (в основном полиэтилена) в общем

производстве П. м.

Хотя доля термореактивных смол в общем выпуске полимеров для П. м. составляет всего около 25%, фактически объём производства реактопластов выше, чем термопластов, из-за высокой степени наполнения (60—80%) смолы.

Применение П. м. в различных областях техники характеризуют данные (табл. 2).

Производство П. м. развивается значительно интенсивнее, чем таких традиционных конструкционных материалов, как чугун и алюминий (табл. 3).

Потребление П. м. в строительстве непрерывно возрастает. При увеличении мирового производства П. м. в 1960—70 примерно в 4 раза объём их потребления в строительстве возрос в 8 раз. Это обусловлено не только уникальными физико-механическими свойствами полимеров, но также и их ценными архитектурно-строительными характеристиками. Основные преимущества П. м. перед др. строительными материалами — лёгкость и сравнительно большая удельная прочность. Благодаря этому может быть существенно уменьшена масса строительных конструкций, что является важнейшей проблемой современного индустриального строительства. Наиболее широко П. м. (главным образом рулонные и плиточные материалы) используют для покрытия полов и др. отделочных работ (см. также Полимербетон), герметизации, гидро- и теплоизоляции зданий, в производстве труб и санитарно-технического оборудования. Их применяют и в виде стеновых панелей, перегородок, элементов кровельных покрытий (в т. ч. светопрозрачных), оконных переплётов, дверей, пневматических строительных конструкций, домиков для туристов, летних павильонов и др.

П. м. занимают одно из ведущих мест среди конструкционных материалов машиностроения. Потребление их в этой отрасли становится соизмеримым (в единицах объёма) с потреблением стали. Целесообразность использования П. м. в машиностроении определяется прежде всего возможностью удешевления продукции. При этом улучшаются также важнейшие технико-экономические параметры машин — уменьшается масса, повышаются долговечность, надёжность и др. Из П. м. изготовляют зубчатые и червячные колёса, шкивы, подшипники, ролики, направляющие станков, трубы, болты, гайки, широкий ассортимент технологической оснастки и др.

Основные достоинства П. м., обусловливающие их широкое применение в авиастроении,— лёгкость, возможность изменять технические свойства в большом диапазоне. За период 1940—70 число авиационных деталей из П. м. увеличилось от 25 до 10 000. Наибольший прогресс в использовании полимеров достигнут при создании лёгких самолётов и вертолётов. Тенденция ко всё более широкому их применению характерна также для производства ракет и космических аппаратов, в которых масса деталей из П. м. может составлять 50% от общей массы аппарата. С использованием реактопластов изготовляют реактивные двигатели, силовые агрегаты самолётов (оперение, крылья, фюзеляж и др.), корпуса ракет, колёса, стойки шасси, несущие винты вертолётов, элементы тепловой защиты, подвесные топливные баки и др. Термопласты применяют в производстве элементов остекления, антенных обтекателей, при декоративной отделке интерьеров самолётов и др., пено- и сотопласты — как заполнители высоконагруженных трёхслойных конструкций.

Области применения П. м. в судостроении очень разнообразны, а перспективы использования практически неограничены. Их применяют для изготовления корпусов судов и корпусных конструкций (главным образом стеклопластики), в производстве деталей судовых механизмов, приборов, для отделки помещений, их тепло-, звуко- и гидроизоляции.

В автомобилестроении особенно большую перспективу имеет применение П. м. для изготовления кабин, кузовов и их крупногабаритных деталей, т.к. на долю кузова приходится около половины массы автомобиля и ~ 40% его стоимости. Кузова из П. м. более надёжны и долговечны, чем металлические, а их ремонт дешевле и проще. Однако П. м. не получили ещё большого распространения в производстве крупногабаритных деталей автомобиля, главным образом из-за недостаточной жёсткости и сравнительно невысокой атмосферостойкости. Наиболее широко П. м. применяют для внутренней отделки салона автомобиля. Из них изготовляют также детали двигателя, трансмиссии, шасси. Огромное значение, которое П. м. играют в электротехнике, определяется тем, что они являются основой или обязательным компонентом всех элементов изоляции электрических машин, аппаратов и кабельных изделий. П. м. часто применяют и для защиты изоляции от механических воздействий и агрессивных сред, для изготовления конструкционных материалов и др.

Тенденция ко всё более широкому применению П. м. (особенно плёночных материалов, см. Плёнки полимерные) характерна для всех стран с развитым сельским хозяйством. Их используют при строительстве культивационных сооружений, для мульчирования почвы, дражирования семян, упаковки и хранения с.-х. продукции и т.д. В мелиорации и с.-х. водоснабжении полимерные плёнки служат экранами, предотвращающими потерю воды на фильтрацию из оросительных каналов и водоёмов; из П. м. изготовляют трубы различного назначения, используют их в строительстве водохозяйственных сооружений и др.

В медицинской промышленности применение П. м. позволяет осуществлять серийный выпуск инструментов, специальной посуды и различных видов упаковки для лекарств. В хирургии используют пластмассовые клапаны сердца, протезы конечностей, ортопедические вкладки, туторы, стоматологические протезы, хрусталики глаза и др.

Лит.: Энциклопедия полимеров, т, 1—2, М., 1972—74; Технология пластических масс, под ред. В. В. Коршака, М., 1972; Лосев И. П., Тростянская Е. Б., Химия синтетических полимеров, 3 изд., М., 1971; Пластики конструкционного назначения, под ред. Е. Б. Тростянской, М., 1974.

Е. Б. Тростянская.

Табл. 1.—Свойства пластмасс.

Основные компоненты Плот-ность, г/см3 Термо-стойкость, ° С Твердость, Мн/м2(кгс/мм2) Модуль упру-гости при рас-тяжении, Гн/м2 (кгс/мм2) Ударная вязкость, кдж/м2 Разрушающее напряжение, Мн/м2(кгс/мм2)
полимер наполнитель при разрыве при сжатии при изгибе
Термопласты
Полиэтилен 0,945 60—80 45—60 (4,5—6,0) 0,4—0,55 (40—55) Не разру-шается 20—40 (2—4) 40—80 (4—8) 20—30 (2—3)
Поливинил-хлорид 1,38 60—70 130—160 (13—16) 3—4 (300—400) 100—120 40—60 (4—6) 80—120 (8—12) 80—120 (8—12)
Полистирол 1,047 75—85 140—150 (14—15) 3—4 (300—400) 10—15 35—40 (3,5—4) 80—110 (8—11) 80—90 (8—9)
Полистирол Эластомер 1,03 70—80 110—120 (11—12) 1,8—2,5 (180—250) 25—35 27—30 (2,7—3) 40—50 (4—5)
Полистирол Стекловолокно (l = 2—4 мм; 30% по массе) 1,4 100—110 180—190 (18—19) 6,8—8 (680—800) 17—20 70—80 (7—8) 100—120 (10—12)
Полиамид-6 1,14 60—70 100—120 (10—12) 2,3—2,8 (230—280) 10—170 60—90 (6—9) 50—65 (5—6,5) 90—140 (9—14)
Полиамид-6 Стекловолокно (l = 2—4 мм; 20% по массе) 1,35 120—130 200—250 (20—25) 8,4 (840) 20—40 180 (18) 180—200 (18—20) 200—280 (20—28)
Поликарбонат 1,2 110—130 150—160 (15—16) 2,2—2,6 (220—260) 120—140 50—75 (5—75) 80—85 (8—8,5) 80—100 (8—10)
Поликарбонат Стекловолокно (l = 2—4 мм) 1,42 200—220 250—280 (25—28) 6,5—7,5 (650—750) 90—110 80—90 (8—9) 100—110 (10—11) 140—150 (14—15)
Реактопласты
Отвержденная феноло-фор-мальдегид- ная смола 110—130 220—250 (22—25) 3—4 (300—400) 3—4 30—50 (3—5)
То же Древесная мука (50% по массе) 1,4 100 200—240 (20—24) 7—8 (700—800) 4—4,5 40—50 (4—5) 150 (15) 60—70 (6—7)
То же Кварцевая мука (50% по массе) 1,9 150 8—10 (800—1000) 3—3,5 40—50 (4—5) 60—70 (6—7) 60—80 (6—8)
То же Асбестовое волокно (50% по массе) 1,85 200—250 16—25 (1600—2500) 21 50—70 (5—7) 100—110 (10—11) 80 (8)
То же Древесный шпон (75% по массе) 1,3 125 200—240 (20—24) 28 (2800) 80 250—280 (25—28) 160—180 (16—18) 260—280 (26—28)
Отвержденная эпоксидная смола 1,27 160—180 (16—18) 3—3,5 (300—350) 60—70 (6—7)
То же Стекловолокно непрерывное однонаправленное (70% по массе) 2,1 160—180 50—56 (5000—5600) 100—140 1800—2000 (180—200) 1200—1400 (120—140) 2000—200 (200—220)
То же Стеклоткань (70% по массе) 1,79—1,94 120—160 22—31 (2200—3100) 450—480 (45—48) 450—500 (45—50) 650—700 (65—70)
То же Углеродное волокно непрерывное однонаправленное (60% по массе) 1,52 160—200 180—230 (18000—23000) 40—50 1000—1200 (100—120) 600—800 (60—80) 800—1000 (80—100)
То же Полибензимидазольное волокно непрерывное однонаправленное (60% по массе) 1,36 180—200 120—150 (12000—15000) 200—250 (20—25) 300—350 (30—35) 500—600 (50—60)
То же Стекловолокно, хаотичное распределение (70% по массе) 1,7—1,85 130—180 (13—18) 100—130 (10—13) 240—300 (24—30)

Табл. 2.—Структура потребления пластмасс в различных странах, % от общего потребления*.

Область применения СССР США Япония ФРГ ГДР
Строительство 35 28 28 33 28
Машиностроение 25 23 25 20 18
Легкая промышленность и товары народного потребления 24 31 35 35 32
Электротехника и электроника 10 12 10 8 16
Сельское хозяйство 6 6 2 4 6
Поделиться:
Популярные книги

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Кодекс Охотника. Книга ХХ

Винокуров Юрий
20. Кодекс Охотника
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга ХХ

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Последний Паладин. Том 7

Саваровский Роман
7. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 7

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Огни Аль-Тура. Завоеванная

Макушева Магда
4. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Аль-Тура. Завоеванная

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Заставь меня остановиться 2

Юнина Наталья
2. Заставь меня остановиться
Любовные романы:
современные любовные романы
6.29
рейтинг книги
Заставь меня остановиться 2