Большая Советская Энциклопедия (ПО)
Шрифт:
Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3).
Поглощающая нагрузка
Поглоща'ющая нагру'зка , нагрузочное сопротивление, оконечное устройство радиотехнического тракта, преимущественно диапазона СВЧ, служащее для полного или частичного поглощения мощности электромагнитных колебаний. П. н. малой мощности (< 1 вт ) применяют: для согласования узлов СВЧ, при измерении характеристик элементов, узлов и электронных приборов СВЧ, в качестве самокалиброванного источника низкотемпературных шумов на СВЧ и т.д.; П. н. большой мощности (1 вт — 10 кв и более) — в качестве эквивалентов
Лит.: Лебедев И. В., Техника и приборы СВЧ, 2 изд., т. 1, М., 1970.
В. И. Сушкевич.
Поглощающая скважина
Поглоща'ющая сква'жина , дренажное устройство для осушения одного или нескольких надпродуктивных водоносных горизонтов путём сброса воды из них по скважине самотёком в расположенный под горной выработкой или залежью поглощающий водоносный горизонт. П. с. применяются при осушении месторождений полезных ископаемых, главным образом в стадии предварительного осушения.
Поглощение волн
Поглоще'ние волн , превращение энергии волн в другие виды энергии в результате взаимодействия волны со средой, в которой она распространяется, или с телами, которые расположены на пути её распространения. В зависимости от природы волны и свойств среды, в которой она распространяется, механизм П. в. может быть различным (например, при поглощении звука и поглощении света ).
Поглощение звука
Поглоще'ние зву'ка , превращение энергии звуковой волны в другие виды энергии, и в частности в тепло; характеризуется коэффициентом поглощения а, который определяется как величина, обратная расстоянию, на котором амплитуда звуковой волны уменьшается в е = 2,718 раз. а выражается в см– 1 т. е. в неперах на см или же в децибелах на м (1 дб/м = 1,15x10– 3 см– 1 ). П. з. характеризуют также коэффициент потерь e = al/p: (где l — длина волны звука) или добротностью Q = 1/e. Величина al называется логарифмическим декрементом затухания. При распространении звука в среде обладающей вязкостью и теплопроводностью,
где r — плотность среды, с — скорость звука в ней, w — круговая частота звуковой волны, h и x — коэффициент сдвиговой и объёмной вязкости соответственно, c — коэффициент теплопроводности, Ср и Cv — теплоёмкости среды при постоянном давлении и объёме соответственно. Если ни один из коэффициентов h, x и c не зависит от частоты, что часто выполняется на практике, то a ~ w2. Если при прохождении звука нарушается равновесное состояние среды, П. з. оказывается значительно большим, чем определяемое по формуле (1). Такое П. з. называется релаксационным (см. Релаксация ) и описывается формулой
где t — время релаксации, c и cyen — скорости звука при wt << 1 и при wt > 1 соответственно. В этом случае П. з. сопровождается дисперсией звука. Величина a/f2 , где f = w/2p, является характеристикой вещества, определяющей П. з. Она, как правило, в жидкостях меньше, чем в газах, а в твёрдых телах для продольных волн меньше, чем в жидкостях.
П. з. в газах зависит от давления газа, разрежение газа эквивалентно увеличению частоты. Теплопроводность и сдвиговая вязкость в газах дают в П. з. вклад одного порядка величины. В жидкостях П. з. в основном определяется вязкостью, а вклад теплопроводности пренебрежимо мал. В большинстве жидкостей для П. з. существенны объёмная вязкость и релаксационные процессы. Частота релаксации в жидкостях, т. е. величина wр = 1/t, как правило, очень велика и область релаксации оказывается лежащей в диапазоне высоких ультразвуковых и гиперзвуковых частот. Коэффициент П. з. обычно сильно зависит от температуры и от наличия примесей.
П. з. в твёрдых телах определяется в основном внутренним трением и теплопроводностью среды, а на высоких частотах и при низких температурах — различными процессами взаимодействия звука с внутренними возбуждениями в твёрдом теле, такими, как фононы, электроны, спиновые волны и пр. Величина П. з. в твёрдом теле зависит от кристаллического состояния вещества (в монокристаллах П. з. обычно меньше, чем в поликристаллах), от наличия дефектов, примесей и дислокаций , от предварительной обработки, которой был подвергнут материал. В металлах, подвергнутых предварительной термообработке, а также ковке, прокатке и т.п., П. з. часто зависит от амплитуды звука. Во многих твёрдых телах при не очень высоких частотах a ~ w, поэтому величина добротности не зависит от частоты и может служить характеристикой потерь материала. Самое малое П. з. при комнатных температурах было обнаружено в некоторых диэлектриках, например в топазе, берилле, железоиттриевом гранате (a ~ 15 дб/см при f = 9 Ггц ). В металлах и полупроводниках П. з. всегда больше, чем в диэлектриках, поскольку имеется дополнительное поглощение, связанное с взаимодействием звука с электронами проводимости. В полупроводниках это взаимодействие при определённых условиях может приводить к «отрицательному поглощению», т. е. к усилению звука (см. Усиление ультразвука ). С ростом температуры П. з., как правило, увеличивается.
Наличие неоднородностей в среде приводит к увеличению П. з. В различных пористых и волокнистых веществах П. з. велико, что позволяет применять их для заглушения и звукоизоляции.
Лит.: Бергман Л., Ультразвук и его применение в науке и технике, пер. с нем., 2 изд., М., 1957; Михайлов И. Г., Соловьев В. А. и Сырников Ю. П., Основы молекулярной акустики, М., 1964; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 2, ч. А, т. 3, ч. Б, М., 1968—1969: т. 7, М., 1974; Труэлл P., Эльбаум Ч., Чик Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972.
А. Л. Полякова.
Поглощение света
Поглоще'ние све'та, уменьшение интенсивности оптического излучения (света), проходящего через материальную среду, за счёт процессов его взаимодействия со средой. Световая энергия при П. с. переходит в различные формы внутренней энергии среды; она может быть полностью или частично переизлучена средой на частотах, отличных от частоты поглощённого излучения.