Большая Советская Энциклопедия (ПО)
Шрифт:
Основной закон, описывающий П. с., — закон Бугера
Зависимость kl от l называется спектром поглощения вещества. Для изолированных атомов (например, в разреженных газах) он имеет вид набора узких линий, т. е. k l отличен от 0 лишь в определённых узких диапазонах длин волн (шириной в десятые — сотые доли
Ещё Бугер высказал убеждение, что для П. с. важны «не толщины, а массы вещества, содержащиеся в этих толщинах». Позднее немецкий учёный А. Бер (1852) экспериментально подтвердил это, показав, что при П. с. молекулами газа или вещества, растворённого в практически непоглощающем растворителе, ПП пропорционален числу поглощающих молекул на единицу объёма (и, следовательно, на единицу длины пути световой волны), т. е. концентрации с: kl = clс (правило Бера). Так закон П. с. приобрёл вид Бугера — Ламберта — Бера закона ;
Сказанное выше относится к средам сравнительно малой оптической толщины , равной (в пренебрежении рассеянием света) kl l. При возрастании kll П. с. средой усиливается на всех частотах — линии и полосы поглощения расширяются. (Объяснение этому даёт квантовая теория П. с., учитывающая, в частности, многократное рассеяние фотонов в оптически «толстой» среде с изменением их частоты и, в конечном счёте, поглощением их частицами среды.) При достаточно больших kll среда поглощает всё проникающее в неё излучение как абсолютно чёрное тело .
В проводящих средах (металлах , плазме и т.д.) световая энергия передаётся не только связанным электронам, но и (часто преимущественно) свободным электронам, kl в таких средах сильно зависит от их электропроводности а. Значительное П. с. в проводящих средах очень сильно влияет на все процессы распространения света в них; это формально учитывается тем, что член, содержащий kl входит в выражение для комплексного преломления показателя среды. В несколько идеализированном случае П. с. только свободными электронами (электронами проводимости) nkl = 4ps/c (n — действительная часть показателя преломления, с — скорость света ). Измерения П. с. металлами позволяют определить многие характерные их свойства; опытные данные при этом хорошо описываются современной квантовой теорией металлооптики . В теоретических расчётах часто пользуются величиной c, связанной с kl соотношением
В терминах квантовой теории при П. с. электроны в поглощающих атомах, ионах, молекулах или твёрдых телах переходят с более низких уровней энергии на более высокие (см. также Квантовые переходы ). Обратный переход в основное состояние или в «нижнее» возбуждённое состояние может совершаться с излучением фотона или безызлучательно. В последнем случае энергия возбуждённой частицы может, например, в столкновении с др. частицей перейти в кинетическую энергию сталкивающихся частиц (см. Столкновения атомные ). Тип «обратного» перехода определяет, в какую форму энергии среды превращается энергия поглощённого света.
В световых потоках чрезвычайно большой интенсивности П. с. многими средами перестаёт подчиняться закону Бугера — kl начинает зависеть от I. Связь между I и I становится нелинейной (нелинейное П. с.). Этот эффект, в частности, может быть обусловлен тем, что очень большая доля поглощающих частиц, перейдя в возбуждённое состояние и оставаясь в нём сравнительно долго, меняет (или совсем теряет) способность поглощать свет, что, разумеется, заметно изменяет характер П. с. средой. (Опыты Вавилова, показавшие соблюдение закона Бугера и при больших интенсивностях, выполнялись с веществами, молекулы которых возбуждаются очень ненадолго — на время ~ 10– 8 сек — и в которых поэтому доля возбуждённых молекул всегда невелика.) Особый интерес представляет ситуация, когда в поглощающей среде искусственно создана инверсия населённостей энергетических уровней, при которой число возбуждённых состояний на верхнем уровне больше, чем на нижнем. В этом случае каждый фотон из падающего потока вызывает испускание ещё одного точно такого же фотона с большей вероятностью, чем поглощается сам (см. Излучение , в разделе Квантовая теория излучения). В результате интенсивность выходящего потока I превосходит интенсивность падающего I , т. е. имеет место усиление света. Формально это явление соответствует отрицательности kl в законе Бугера и поэтому носит название отрицательного П. с. На отрицательном П. с. основано действие оптических квантовых усилителей и оптических квантовых генераторов (лазеров)