Большая Советская Энциклопедия (СТ)
Шрифт:
Теория С. п. г. позволяет с единой точки зрения трактовать выдвигаемые практикой различные задачи математической статистики (оценка различия между средними значениями, проверка гипотезы постоянства дисперсии, проверка гипотезы независимости, проверка гипотез о распределениях и т.п. Идеи последовательного анализа , примененные к С. п. г., указывают на возможность связать решение о принятии или отклонении гипотезы с результатами последовательно проводимых наблюдений (в этом случае число наблюдений, на основе которых по определённому правилу принимается решение, не фиксируется заранее, а определяется в ходе эксперимента) (см. также Статистические решения ).
Лит.: Kpamep Г., Математические методы статистики, пер. с англ., 2 изд., М., 1975; Леман Э., Проверка статистических гипотез, пер. с англ., М., 1964.
Л. В. Прохоров.
Статистическая радиофизика
Статисти'ческая радиофи'зика, раздел радиофизики, посвященный изучению флуктуационных явлений при генерации, излучении, распространении и приёме радиоволн. В более широком смысле С. р. охватывает исследования статистических закономерностей в колебательных и волновых процессах (когерентность , проблемы взаимодействия сигналов и шумов в нелинейных системах и т.п.). Практическое значение С. р. связано с тем, что в системах радиолокации , радионавигации , радиосвязи и др. флуктуации играют важную и во многих случаях определяющую роль на основных этапах передачи информации.
Электрические флуктуации, обусловленные фундаментальными физическими процессами в веществе, являются причиной возникновения флуктуационных напряжений и токов в радиоприёмных устройствах (см. флуктуации электрические ). Флуктуационные токи и напряжения, неизбежные в реальных генераторах колебаний, определяют предельно достижимые монохроматичность и стабильность частоты генератора радиопередающих устройств. Флуктуационные явления при распространении радиоволн в атмосфере связаны с тем, что показатель преломления тропосферы и ионосферы испытывает нерегулярные изменения, носящие флуктуационный характер. Идеи и методы С. р. проникают в оптику.
Лит.: Рытов С. М. Введение в статистическую радиофизику, М., 1966; Вандер-Зил А., Флуктуации в радиотехнике и физике, пер. с англ., М., 1958: Малахов А. Н., Флуктуации в автоколебательных системах, М., IJ68; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967.
С. Л. Ахманов.
Статистическая сумма
Статисти'ческая су'мма, величина, обратная нормирующему множителю канонического Гиббса распределения в квантовой статистической физике . В классической статистической физике такая величина называется статистическим интегралом. С. с. (статистический интеграл) позволяет вычислить все потенциалы термодинамические .
Статистическая термодинамика
Статисти'ческая термодина'мика равновесная, раздел статистической физики , дающий статистическое обоснование законов термодинамики основе статистической механики Дж. У. Гиббса и посвященный вычислениям термодинамических характеристик системы (потенциалы термодинамические , уравнение состояния ) на основе законов взаимодействия составляющих систему частиц. Неравновесная С. т. даёт статистическое обоснование термодинамики неравновесных процессов (уравнений переноса энергии, импульса, массы) и позволяет получить выражения для входящих в уравнения коэффициентов (кинетических коэффициентов, или коэффициентов переноса) на основе законов взаимодействия и движения частиц системы.
Статистическая физика
Статисти'ческая фи'зика, раздел физики, задача которого — выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.), через свойства этих частиц и взаимодействие между ними.
Изучением макроскопических тел занимаются и др. разделы физики — термодинамика , механика сплошных сред, электродинамика сплошных сред. Однако при решении конкретных задач методами этих дисциплин в соответствующие уравнения всегда входят неизвестные параметры или функции, характеризующие данное тело. Так, для решения задач гидродинамики необходимо знать уравнение состояния жидкости или газа, т. е. зависимость плотности от температуры и давления, теплоёмкость жидкости, её коэффициент вязкости и т.п. Все эти зависимости и параметры можно, разумеется, определять экспериментально, поэтому методы, о которых идёт речь, называются феноменологическими. Статистическая же физика позволяет, по крайней мере в принципе, а во многих случаях и фактически, вычислить все эти величины, если известны силы взаимодействия между молекулами. Т. о., С. ф. использует сведения о «микроскопическом» строении тел — о том, из каких частиц они состоят, как эти частицы взаимодействуют, поэтому её называют микроскопической теорией.
Если в какой-то момент времени заданы координаты и скорости всех частиц тела и известен закон их взаимодействия, то, решая уравнения механики, можно было бы найти эти координаты и скорости в любой последующий момент времени и тем самым полностью определить состояние исследуемого тела. (Для простоты изложение ведётся на языке классической механики. Но и в квантовой механике ситуация та же: зная начальную волновую функцию системы и закон взаимодействия частиц, можно, решая Шрёдингера уравнение , найти волновую функцию, определяющую состояние системы во все будущие моменты времени.) Фактически, однако, такой путь построения микроскопической теории невозможен, т.к. число частиц в макроскопических телах очень велико. Например, в 1 см3 газа при температуре 0 °С и давлении в 1 атм содержится примерно 2,7x1019 молекул. Невозможно решить такое число уравнений, а начальные координаты и скорости всех молекул всё равно неизвестны.