Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (СТ)
Шрифт:

Ещё один способ построения теории жидкости основан на использовании функций распределения молекул. Если проинтегрировать функцию распределения w системы по импульсам всех частиц и по координатам всех частиц, кроме одной, получится одночастичная пространственная функция распределения f1 (r ). Если проинтегрировать w по импульсам всех частиц и по координатам всех частиц, кроме двух, получится двухчастичная функция распределения f2 (r1 , r2 ), всех частиц, кроме трёх, — трёхчастичная функция распределения f3 (r1 , r2 , r3 , ) и т.д. Двухчастичная функция распределения является непосредственно наблюдаемой физической величиной — через неё выражается, например, упругое рассеяние рентгеновских лучей и нейтронов в жидкости. Считая, что функция распределения всей системы даётся распределением Гиббса (6), можно получить интегральное

соотношение, выражающее двухчастичную функцию через трёхчастичную и потенциал взаимодействия между частицами. В теории жидкости это точное соотношение дополняется некоторыми приближёнными, выражающими трёхчастичную функцию через двухчастичную (одночастичная функция в однородной жидкости сводится к постоянной). В результате получается уравнение для двухчастичной функции, которое решается численно. Дополнительные соотношения находятся на основании правдоподобных физических соображений и носят интерполяционный характер, так что основанные на них теории могут претендовать лишь на качественное описание свойств жидкости. Тем не менее даже такое качественное описание имеет важное значение, поскольку в нём проявляется общность законов С. ф. (см. также Жидкость ).

Химическое равновесие. Большое значение имеет предоставляемая С. ф. возможность вычисления констант химического равновесия, определяющих равновесные концентрации реагирующих веществ. Термодинамическая теория приводит к условию равновесия в виде равенства нулю некоторой линейной комбинации химических потенциалов этих веществ. В случае реакции между газами химические потенциалы определяются формулами, аналогичными формуле (14) для одноатомного газа, и константу равновесия можно вычислить, если известна теплота реакции. В выражения для химических потенциалов входит постоянная Планка, поэтому квантовые эффекты существенны даже для реакций между классическими газами. Важным частным случаем формул химического равновесия является Саха формула , определяющая равновесную степень ионизации газа. (Подробнее см. Равновесие химическое .)

Вырожденные газы. Если понижать температуру газа при постоянной плотности, начинают проявляться квантово-механические эффекты, связанные со свойствами симметрии волновых функций системы одинаковых частиц. Газ «вырождается» (см. Вырожденный газ ). Для частиц с полуцелым спином волновая функция должна менять знак при перестановке любой пары частиц. Это, в частности, приводит к тому, что в одном квантовом состоянии не может находиться больше одной частицы (Паули принцип ). Количество частиц с целым спином в одном состоянии может быть любым, но требуемая в этом случае неизменность волновой функции при перестановке частиц и здесь приводит к изменению статистических свойств газа. Частицы с полуцелым спином описываются статистикой Ферми — Дирака; их называют фермионами . К фермионам относятся, например, электроны, протоны, нейтроны, атомы дейтерия, атомы лёгкого изотопа гелия 3 Не. Частицы с целым спином — бозоны — описываются статистикой Бозе — Эйнштейна. К ним относятся атомы водорода, атомы 4 Не, кванты света — фотоны .

Пусть среднее число частиц газа в единице объёма с импульсами, лежащими в интервале d3 p , есть

, так что np — число частиц в одной ячейке фазового пространства (g = 2J + 1, где Jспин частицы). Тогда из распределения Гиббса следует, что для идеальных газов фермионов (верхний знак) и бозонов (нижний знак):

. (19)

В этой формуле e = p2 /2M — энергия частицы с импульсом р , m — химический потенциал, определяемый из условия постоянства числа частиц (N ) в системе:

.

Формула (19) переходит в формулу распределения Больцмана (12) при

; левая сторона этого неравенства делается порядка правой при таких температурах, при которых длина волны де Бройля частиц, движущихся с тепловой скоростью, становится порядка среднего расстояния между ними. Т. о., вырождение сказывается при температурах тем более низких, чем меньше плотность числа частиц в газе (и чем больше масса частицы М ).

В случае фермионов, как и должно быть, np lb 1. Это приводит к тому, что частицы газа фермионов (ферми-газа) и при Т = 0 обладают отличными от нуля импульсами, поскольку в состоянии с нулевым импульсом может находиться только одна частица. Точнее, при Т = 0 для ферми-газа np = 1 внутри Ферми поверхности — сферы в импульсном пространстве с радиусом

, а вне этой «ферми-сферы» np = 0. При конечных, но низких температурах np меняется от 1 внутри сферы до нуля вне сферы постепенно, причём ширина переходной области порядка MkT/pF . Величина np для ферми-газа как функция от энергии e изображена схематически на рис. 2 (e = pF2 /2M ). При изменении температуры газа меняется состояние частиц только в этом переходном слое, и теплоёмкость ферми-газа при низких температурах пропорциональна Т и равна:

. (20)

В бозе-газе при Т = 0 все частицы находятся в состоянии с нулевым импульсом. При достаточно низких температурах в состоянии с р = 0 находится конечная доля всех частиц; эти частицы образуют т. н. бозе-эйнштейновский конденсат. Остальные частицы находятся в состояниях с р ¹ 0, причём их число определяется формулой (19) с m = 0. При температуре

 в бозе-газе происходит фазовый переход (см. ниже). Доля частиц с нулевым импульсом обращается в нуль Бозе — Эйнштейна конденсация исчезает. Кривая зависимости теплоёмкости от температуры имеет в точке Tc излом. Распределение частиц по импульсам при Т > Тс даётся формулой (19) причём m < 0. Схематически функции распределения Максвелла, Ферми — Дирака и Бозе — Эйнштейна (при Т > Тс ) изображены на рис 3.

Особым случаем применения статистики Бозе — Эйнштейна является равновесное электромагнитное излучение, которое можно рассматривать как газ, состоящий из фотонов. Энергия фотона связана с его импульсом соотношением

, где с — скорость света в вакууме. Число фотонов не является заданной величиной, а само определяется из условия термодинамического равновесия, поэтому их распределение по импульсам даётся формулой (19) с m = 0 (причём e= рс ). Распределение энергии в спектре излучения получается умножением числа фотонов на энергию e, так что плотность энергии в интервале частот d w равна
, причем np берётся при
. Т. о. получается формула Планка для спектра равновесного (чёрного) излучения (см. Планка закон излучения ).

Кристаллическая решётка. Применение С. ф. к вычислению термодинамических функций кристаллической решётки основано на том, что атомы в решётке совершают малые колебания около своих положений равновесия. Это позволяет рассматривать решётку как совокупность связанных гармонических осцилляторов . В такой системе могут распространяться волны, характеризующиеся своим законом дисперсии, т. е. зависимостью частоты w от волнового вектора k . В квантовой механике эти волны можно рассматривать как совокупность т. н. элементарных возбуждений, или квазичастицфононов , обладающих энергией

 и квазиимпульсом ћk . Основное отличие квазиимпульса от импульса состоит в том, что энергия фонона является периодической функцией квазиимпульса с периодом, по порядку величины равным
, где а — постоянная решётки. Функция распределения фононов по квазиимпульсам даётся формулой распределения Бозе—Эйнштейна (19) с m = 0. При этом
. Т. о., знание зависимости w(k ) позволяет вычислить теплоёмкость решётки. Эту зависимость можно определить из опытов по неупругому рассеянию нейтронов в кристалле (см. Нейтронография ) или вычислить теоретически, задавая значения «силовых констант», определяющих взаимодействие атомов в решётке. При низких температурах существенны только фононы с малой частотой, соответствующие квантам обычных звуковых волн, для которых связь w с k линейна. Это приводит к тому, что теплоёмкость кристаллической решётки пропорциональна T3 . При высоких температурах можно пользоваться законом равного распределения энергии по степеням свободы, так что теплоёмкость не зависит от температуры и равна 3Nk , где N — число атомов в кристалле.

Металлы . В металлах вклад в термодинамические функции дают также электроны проводимости. Состояние электрона в металле характеризуется квазиимпульсом, и, т.к. электроны подчиняются статистике Ферми — Дирака, их распределение по квазиимпульсам даётся формулой (19). Поэтому теплоёмкость электронного газа, а следовательно, и всего металла при достаточно низких температурах пропорциональна Т . Отличие от ферми-газа свободных частиц состоит в том, что поверхность Ферми, около которой сосредоточены «активные» электроны, уже не является сферой, а представляет собой некоторую сложную поверхность в пространстве квазиимпульсов. Форму поверхности Ферми, равно как и зависимость энергии от квазиимпульса вблизи этой поверхности, можно определять экспериментально, главным образом исследуя магнитные свойства металлов, а также рассчитывать теоретически, используя т. н. модель квазипотенциала. В сверхпроводниках (см. Сверхпроводимость ) возбужденные состояния электрона отделены от ферми-поверхности щелью конечной ширины, что приводит к экспоненциальной зависимости электронной теплоёмкости от температуры. В ферромагнитных и антиферромагнитных веществах вклад в термодинамические функции дают также колебания магнитных моментов — спиновые волны .

Поделиться:
Популярные книги

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

Последняя жена Синей Бороды

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя жена Синей Бороды

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Мастер...

Чащин Валерий
1. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
6.50
рейтинг книги
Мастер...

Лорд Системы 8

Токсик Саша
8. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 8

Титан империи 2

Артемов Александр Александрович
2. Титан Империи
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Титан империи 2

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4