Большая Советская Энциклопедия (СТ)
Шрифт:
Ещё один способ построения теории жидкости основан на использовании функций распределения молекул. Если проинтегрировать функцию распределения w системы по импульсам всех частиц и по координатам всех частиц, кроме одной, получится одночастичная пространственная функция распределения f1 (r ). Если проинтегрировать w по импульсам всех частиц и по координатам всех частиц, кроме двух, получится двухчастичная функция распределения f2 (r1 , r2 ), всех частиц, кроме трёх, — трёхчастичная функция распределения f3 (r1 , r2 , r3 , ) и т.д. Двухчастичная функция распределения является непосредственно наблюдаемой физической величиной — через неё выражается, например, упругое рассеяние рентгеновских лучей и нейтронов в жидкости. Считая, что функция распределения всей системы даётся распределением Гиббса (6), можно получить интегральное
Химическое равновесие. Большое значение имеет предоставляемая С. ф. возможность вычисления констант химического равновесия, определяющих равновесные концентрации реагирующих веществ. Термодинамическая теория приводит к условию равновесия в виде равенства нулю некоторой линейной комбинации химических потенциалов этих веществ. В случае реакции между газами химические потенциалы определяются формулами, аналогичными формуле (14) для одноатомного газа, и константу равновесия можно вычислить, если известна теплота реакции. В выражения для химических потенциалов входит постоянная Планка, поэтому квантовые эффекты существенны даже для реакций между классическими газами. Важным частным случаем формул химического равновесия является Саха формула , определяющая равновесную степень ионизации газа. (Подробнее см. Равновесие химическое .)
Вырожденные газы. Если понижать температуру газа при постоянной плотности, начинают проявляться квантово-механические эффекты, связанные со свойствами симметрии волновых функций системы одинаковых частиц. Газ «вырождается» (см. Вырожденный газ ). Для частиц с полуцелым спином волновая функция должна менять знак при перестановке любой пары частиц. Это, в частности, приводит к тому, что в одном квантовом состоянии не может находиться больше одной частицы (Паули принцип ). Количество частиц с целым спином в одном состоянии может быть любым, но требуемая в этом случае неизменность волновой функции при перестановке частиц и здесь приводит к изменению статистических свойств газа. Частицы с полуцелым спином описываются статистикой Ферми — Дирака; их называют фермионами . К фермионам относятся, например, электроны, протоны, нейтроны, атомы дейтерия, атомы лёгкого изотопа гелия 3 Не. Частицы с целым спином — бозоны — описываются статистикой Бозе — Эйнштейна. К ним относятся атомы водорода, атомы 4 Не, кванты света — фотоны .
Пусть среднее число частиц газа в единице объёма с импульсами, лежащими в интервале d3 p , есть
В этой формуле e = p2 /2M — энергия частицы с импульсом р , m — химический потенциал, определяемый из условия постоянства числа частиц (N ) в системе:
Формула (19) переходит в формулу распределения Больцмана (12) при
В случае фермионов, как и должно быть, np lb 1. Это приводит к тому, что частицы газа фермионов (ферми-газа) и при Т = 0 обладают отличными от нуля импульсами, поскольку в состоянии с нулевым импульсом может находиться только одна частица. Точнее, при Т = 0 для ферми-газа np = 1 внутри Ферми поверхности — сферы в импульсном пространстве с радиусом
В бозе-газе при Т = 0 все частицы находятся в состоянии с нулевым импульсом. При достаточно низких температурах в состоянии с р = 0 находится конечная доля всех частиц; эти частицы образуют т. н. бозе-эйнштейновский конденсат. Остальные частицы находятся в состояниях с р ¹ 0, причём их число определяется формулой (19) с m = 0. При температуре
Особым случаем применения статистики Бозе — Эйнштейна является равновесное электромагнитное излучение, которое можно рассматривать как газ, состоящий из фотонов. Энергия фотона связана с его импульсом соотношением
Кристаллическая решётка. Применение С. ф. к вычислению термодинамических функций кристаллической решётки основано на том, что атомы в решётке совершают малые колебания около своих положений равновесия. Это позволяет рассматривать решётку как совокупность связанных гармонических осцилляторов . В такой системе могут распространяться волны, характеризующиеся своим законом дисперсии, т. е. зависимостью частоты w от волнового вектора k . В квантовой механике эти волны можно рассматривать как совокупность т. н. элементарных возбуждений, или квазичастиц — фононов , обладающих энергией
Металлы . В металлах вклад в термодинамические функции дают также электроны проводимости. Состояние электрона в металле характеризуется квазиимпульсом, и, т.к. электроны подчиняются статистике Ферми — Дирака, их распределение по квазиимпульсам даётся формулой (19). Поэтому теплоёмкость электронного газа, а следовательно, и всего металла при достаточно низких температурах пропорциональна Т . Отличие от ферми-газа свободных частиц состоит в том, что поверхность Ферми, около которой сосредоточены «активные» электроны, уже не является сферой, а представляет собой некоторую сложную поверхность в пространстве квазиимпульсов. Форму поверхности Ферми, равно как и зависимость энергии от квазиимпульса вблизи этой поверхности, можно определять экспериментально, главным образом исследуя магнитные свойства металлов, а также рассчитывать теоретически, используя т. н. модель квазипотенциала. В сверхпроводниках (см. Сверхпроводимость ) возбужденные состояния электрона отделены от ферми-поверхности щелью конечной ширины, что приводит к экспоненциальной зависимости электронной теплоёмкости от температуры. В ферромагнитных и антиферромагнитных веществах вклад в термодинамические функции дают также колебания магнитных моментов — спиновые волны .