Большая Советская Энциклопедия (ТЕ)
Шрифт:
Лит.: Веселкин П. Н., Лихорадка, М., 1963; Иванов К. П,, Биоэнергетика и температурный гомеостазис, Л., 1972.
К. П. Иванов.
Тепловой эквивалент работы
Теплово'й эквивале'нт рабо'ты, количество теплоты, энергетически эквивалентное единице работы, если за счёт совершения работы увеличивается внутренняя энергия физической системы. Понятие Т. э. р. применяют в тех случаях, когда работа и количество теплоты измеряются в разных единицах. Значение Т. э. р. обратно значению механического эквивалента теплоты и равно 0,239 кал/дж.
Тепловой эффект реакции
Теплово'й эффе'кт реа'кции, алгебраическая сумма теплоты, поглощённой при данной реакции химической , и совершенной внешней работы за вычетом работы против внешнего давления. Если при реакции теплота выделяется или работа совершается системой, то соответствующие величины входят в сумму со знаком
Т. э. р. зависит от температуры и давления (или объёма): зависимость от температуры выражается Кирхгофа уравнением . Для сравнения Т. э. р. и упрощения термодинамических расчётов все величины Т. э. р. относят к стандартным условиям (все реактанты находятся в стандартных состояниях ). Данные по Т. э. р. получают непосредственно (см. Калориметрия ) либо при изучении равновесия химического при различных температурах, а также путём расчёта, например по теплотам образования всех реагентов. При отсутствии исходных данных они могут быть оценены с помощью приближённых методов вычисления, основанных на закономерных связях между теплотами образования (теплотами сгорания) и химическим составом веществ. Т. э. р. важны для теоретической химии и необходимы при расчётах равновесных составов смесей, выхода продуктов реакций, удельной тяги топлив реактивных двигателей и для решения многих других прикладных задач (см. Термодинамика химическая ).
Тепловыделяющий элемент
Тепловыделя'ющий элеме'нт ядерного реактора (ТВЭЛ), один из основных конструктивных узлов реактора, содержащий ядерное топливо , размещается в активной зоне реактора. В Т. э. протекает ядерная реакция деления топлива, в результате которой выделяется тепло, передаваемое теплоносителю . Т. э. состоит из сердечника и герметизирующей оболочки.
Сердечник Т. э., кроме делящегося вещества (например, 233 U, 235 U, 239 Pu), может содержать «сырьевое» вещество, обеспечивающее воспроизводство ядерного топлива (238 U,232 Th). Материал для сердечника может быть получен в виде металла, металлокерамики или керамики. Металлические сердечники изготовляют из чистых урана, тория или плутония или из их сплавов с другими металлами (например, с Al, Zr, Cr, Zn). Металлокерамические сердечники получают, например, из U и Al путём прессования смесей их порошков (опилок, гранул). Керамические сердечники представляют собой спечённые или сплавленные окислы или карбиды (например, UO2 , ThC2 ). Металлокерамические и керамические сердечники, а также сердечники из сплавов наиболее полно отвечают предъявляемым к материалу сердечника высоким требованиям по механической прочности, а также по неизменности физических свойств и геометрических размеров в условиях высоких температур и интенсивного нейтронного и g-излучения. Поскольку, однако, в такого рода сердечниках существ, объём занимает наполнитель (вещество, атомы которого не участвуют в процессе деления и воспроизводства ядерного топлива), то в них используется ядерное топливо с повышенным обогащением (например, с содержанием 235 U до 10% и более). Наполнитель, как правило, обладает небольшим сечением поглощения нейтронов, но иногда в материал сердечника включают небольшие добавки металлов, интенсивно поглощающих нейтроны (например, Mo), если это приводит к повышению стойкости сердечника по отношению к тепловым и радиационным воздействиям.
В распространённых энергетических реакторах, работающих на слабообогащённом уране, наиболее часто применяют керамические сердечники из спечённой двуокиси урана, которые не деформируются при глубоком выгорании топлива. К тому же UO2 не реагирует с водой; вследствие этого разгерметизация Т. э. в реакторе с водяным охлаждением не приводит к попаданию урана в теплоноситель.
Герметизирующая оболочка Т. э. обеспечивает надёжное отделение сердечника от теплоносителя. Нарушение её целостности привело бы к попаданию продуктов деления в теплоноситель, его активации и затруднению обслуживания реактора, а кроме того (в ряде случаев), к химической реакции теплоносителя с веществом сердечника и, следовательно, к «размыванию» сердечника и потере им требуемой формы. В силу этих причин к материалу оболочки предъявляют жёсткие требования. Он должен обладать высокой коррозионной, эрозионной и термической стойкостью, высокой механической прочностью и не должен существенно изменять характер поглощения нейтронов в реакторе. Наиболее употребительные материалы для изготовления оболочки — сплавы алюминия и циркония и нержавеющая сталь. Сплавы Al используются в реакторах с температурой активной зоны < 250—270 °С, сплавы Zr — в энергетических реакторах при температурах 350—400 °С, а нержавеющая сталь, которая довольно интенсивно поглощает нейтроны, — в реакторах с температурой >400 °С. В ряде случаев находят применение и др. вещества, например графит
Для улучшения теплообмена между сердечником и оболочкой осуществляют их диффузионное сцепление (если сердечник металлический) или в зазор между ними вводят газ, хорошо проводящий тепло (например, гелий). Такой зазор необходим, когда материалы сердечника и оболочки имеют существенно разные коэффициенты объёмного расширения.
Конструктивное исполнение Т. э. определяется формой сердечника. Наиболее распространены цилиндрические (стержневые), однако применяются трубчатые, пластинчатые и другие сердечники. Т. э. объединяют в сборки (пакеты, кассеты, блоки) и в таком виде загружают в реактор. В реакторе с твёрдым замедлителем Т. э. или их сборки размещают внутри замедлителя в каналах, по которым протекает теплоноситель. Если замедлитель жидкий и выступает одновременно в роли теплоносителя, то сборки сами являются элементами, направляющими поток жидкости.
Основной показатель работы Т. э. — глубина выгорания топлива в нём; в энергетических реакторах она достигает 30 Мвт сут/т. В энергетических реакторах время работы Т. э. достигает трёх лет. Использованные Т. э. могут быть подвергнуты переработке с целью извлечения из них недогоревшего, а также вновь накопленного ядерного топлива.
Лит. см. при ст. Ядерный реактор .
С. А. Скворцов.
Тепловые нейтроны
Тепловы'е нейтро'ны,медленные нейтроны с кинетической энергией в интервале 0,5 эв — 5 Мэв. Называются тепловыми, так как получаются при замедлении нейтронов до теплового равновесия с атомами замедляющей среды (термализация нейтронов ). Распределение Т. н. в замедлителе по скоростям определяется его температурой в соответствии с Максвелла распределением для молекул газа. Энергия, соответствующая наиболее вероятной скорости Т. н., равна 8,6 10– 5 Тэв, где Т — абсолютная температура в К. Скорость Т. н. с энергией 0,025 эв равна 2200 м/сек и длина волны де Бройля l= 1,8 A (см. Нейтронная оптика ). Так как l близка к величинам межатомных расстояний в твёрдых телах, то дифракция Т. н. используется для изучения структуры твёрдых тел. Наличие у нейтрона магнитного момента позволяет методом когерентного магнитного рассеяния Т. н. изучать магнитную структуру твёрдых тел. Изменения энергии при неупругом рассеянии Т. н. в конденсированных средах сравнимы с их начальной энергией, поэтому неупругое рассеяние Т. н. является методом исследования движения атомов и молекул в твёрдых телах и жидкостях (см. Нейтронография ). Т. н. имеют огромное значение для работы ядерного реактора , так как вызывают цепную реакцию деления U и Pu. Велика также роль Т. н. в производстве радиоактивных изотопов.
Лит.: см. при ст. Медленные нейтроны .
Э. М. Шарапов.
Тёплое
Тёплое, посёлок городского типа, центр Тёпло-Огарёвского района Тульской области РСФСР. Ж.-д. станция на линии Сухиничи — Волово, в 70 км к Ю. от Тулы. Молочный завод.
Теплоёмкость
Теплоёмкость, количество теплоты, поглощаемой телом при нагревании на 1 градус; точнее — отношение количества теплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому изменению Т. единицы массы вещества (г, кг ) называется удельной теплоёмкостью, 1 моля вещества — мольной (молярной) Т.
Количество теплоты, поглощённой телом при изменении его состояния, зависит не только от начального и конечного состояний (в частности, от их температуры), но и от способа, которым был осуществлен процесс перехода между ними. Соответственно от способа нагревания тела зависит и его Т. Обычно различают Т. при постоянном объёме (Cv ) и Т. при постоянном давлении (Ср ), если в процессе нагревания поддерживаются постоянными соответственно его объём или давление. При нагревании при постоянном давлении часть теплоты идёт на производство работы расширения тела, а часть — на увеличение его внутренней энергии , тогда как при нагревании при постоянном объёме вся теплота расходуется только на увеличение внутренней энергии; в связи с этим cp всегда больше, чем cv . Для газов (разреженных настолько, что их можно считать идеальными) разность мольных Т. равна cp — cv = R, где R — универсальная газовая постоянная , равная 8,314 дж/ (мольx К ), или 1,986 кал/ (мольx град ). У жидкостей и твёрдых тел разница между Ср и Cv сравнительно мала.