Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (ТЕ)
Шрифт:

В таблице сопоставлены свойства типичной среднеуглеродистой машиностроительной легированной стали после ВТМО и НТМО. ТМО приводит к повышению усталостных характеристик; особенно велик прирост времени до разрушения в зоне ограниченной выносливости после ВТМО. В результате этой обработки повышается ударная выносливость стали, снижается порог хладноломкости и практически ликвидируется опасная склонность к хрупкости при отпуске (чего не наблюдается после НТМО). Развитие технологии ВТМО привело к созданию новой схемы — ВТМизО, в которой высокотемпературная деформация сочетается с изотермическим превращением. Изделия (в частности, рессоры), обработанные по этой схеме, характеризуются повышенными служебными характеристиками. В большем или меньшем объёме применяются все схемы термомеханического упрочнения, приведённые на рисунке. Выбор схемы проводится с учётом природы и назначения металлического сплава и конкретного изделия.

Механические свойства стали после ВТМО и НТМО

Обработка Образцы для испытаний Предел прочности sв , кгс/мм2
Предел текучести sт , кгс/мм2
Относи-тельное удлинение d , % Относи-тельное сжатие y, % Ударная вязкость, ak , кгсxм/см2
ВТМО + низкий отпуск Плоские (нешлифованные) 220—260 190—210 7—10 20—40 4—5
НТМО + низкий отпуск Круглые (шлифованные) 240—280 200—230 5—7 15—30 3—4

Примечание: 1 кгс/мм2 = 10 Мн/м2.

Эффективность конкретного способа термомеханического упрочнения оценивается по комплексу механических свойств. В инженерном смысле под повышением прочности понимают повышение сопротивления деформации и сопротивления разрушению в различных напряжённых состояниях, в том числе и таком, которое может вызвать образование хрупкой трещины и преждевременное разрушение. Поэтому наряду с традиционными испытаниями на растяжение, удар, усталость современные высокопрочные, в том числе термомеханически упрочнённые, стали должны оцениваться по критериям механики разрушения, с определением энергоёмкости процесса развития трещины и других аналогичных параметров.

Понимание физической сущности упрочнения в результате ТМО оказалось возможным лишь после того, как стали проясняться основные закономерности структурных изменений при горячей деформации. Старое представление о том, что горячая деформация всегда сопровождается рекристаллизацией, оказалось неверным.

При ТМО проводится немедленное и резкое охлаждение после завершения горячей деформации, и конечная структура упрочнённой стали наследует тонкое строение горячедеформированного аустенита. В зависимости от условий деформирования, определяемых величиной напряжения, температурой и скоростью деформации, структура аустенита по окончании горячей деформации сильно различается. Она может отвечать: а) состоянию горячего наклёпа с неупорядоченным распределением дислокаций, когда при последующей закалке прочность повышается и одновременно снижается сопротивление хрупкому разрушению; б) формированию субструктуры в результате динамического возврата и особенно чёткого и устойчивого субзёренного строения в результате динамической полигонизации — закалка в этом случае приведёт к оптимальному сочетанию высоких значений прочности и сопротивления хрупкому разрушению; в) состоянию динамической рекристаллизации, когда в одних объёмах еще сохранена повышенная плотность дислокаций, а в других она резко понижена — закалка в этом случае может привести к получению комплекса повышенных механических свойств, однако значения их в связи с неоднородностью и нестабильностью тонкого строения будут неустойчивы. Следовательно, режимы горячей деформации металлических сплавов при осуществлении ТМО необходимо выбирать с таким расчётом, чтобы получить развитую и устойчивую субструктуру в результате динамической полигонизации. При последующей закалке благодаря сдвиговому характеру мартенситного превращения субструктура деформированного аустенита, сформированная на стадии динамической полигонизации, наследуется образующимся мартенситом. Если, например, осуществляется др. схема ТМО, а именно ВТМизО (рис. ), то благодаря сдвиговому характеру превращения при образовании бейнита последний также наследует субструктуру горячедеформированного аустенита. Во всех случаях присутствие в конечных фазах (мартенсите и др.) этой устойчивой субструктуры определяет высокую дисперсность и мозаичность этих фаз, а также тонкое распределение примесей в них — это и приводит к повышению всех механических свойств, характеризуемому одновременным возрастанием сопротивления пластической деформации и сопротивления разрушению. Это наблюдается не только при «прямой» ТМО, но и при последующей после ТМО термической обработке. Открытое в СССР и широко используемое в отечественной и зарубежной практике явление «наследования» термомеханическое упрочнения базируется на том, что созданная при горячей деформации совершенная и устойчивая субструктура оказывается устойчивой при последующей перекристаллизации. В условиях повторной термической обработки после ТМО перекристаллизация протекает по сдвиговому механизму, что определяет сохранение субструктуры и, следовательно, комплекса высоких механических свойств, созданного при «прямой» ТМО. Развитие идей «наследования» термомеханического упрочнения позволило создать новую схему — предварительную термомеханическую обработку (ПТМО), нашедшую применение в СССР и США, а также объяснить высокий уровень свойств в результате патентирования, являющегося, по существу, разновидностью ТМО.

Применительно к дисперсионно-твердеющим сплавам ТМО в промышленности осуществляют по следующим технологическим схемам: а) нагрев до температуры закалки, деформация, немедленная закалка, старение (ВТМО); б) закалка, деформация, старение (НТМО). Первая схема сравнительно легко осуществима, но имеет недостаток — опасность сильного развития рекристаллизации в связи с высокой температурой деформации,

проводимой при температуре закалки. Она широко используется в производстве прессованных изделий из многих алюминиевых сплавов, в которых небольшие добавки Mn, Сr и др. затрудняют рекристаллизацию. При осуществлении второй схемы могут возникать трудности, связанные с высоким сопротивлением деформации твёрдого раствора при комнатной температуре. Эта схема имеет ряд преимуществ: происходит старение с образованием весьма дисперсных фаз уже при холодной (или тёплой) деформации, создаётся более равномерное распределение выделений упрочняющих фаз, образующихся на дислокациях по всему объёму зёрен. Вторая схема ТМО успешно используется для повышения прочности стареющих медных и алюминиевых сплавов.

Лит.: Бернштейн М. Л., Термомеханическая обработка металлов и сплавов, т. 1—2, М., 1968.

М. Л. Бернштейн.

Классификация видов термомеханической обработки: ПТМО — предварительная термомеханическая обработка; ВТМО — высокотемпературная термомеханическая обработка; ВТМПО — высокотемпературная термомеханическая поверхностная обработка; ВТМизО — высокотемпературная термомеханическая изотермическая обработка; НТМО — низкотемпературная термомеханическая обработка; НТМизО — низкотемпературная термомеханическая изотермическая обработка; ВНТМО — высоко-низкотемпературная термомеханическая обработка; НВТМО — низко-высокотемпературная термомеханическая обработка; ДМО-1 — деформация мартенсита с последующим отпуском; ДМО-2 — деформация мартенсита после ВТМО с последующим отпуском; МТО — деформация немартенситных структур на площадке текучести, в том числе многократная ММТО; МТО-1 — механико-термическая обработка деформацией при комнатной температуре со старением; МТО-2 — механико-термическая обработка деформацией при повышенных температурах со старением; НВТМУ — наследственное высокотемпературное термомеханическое упрочнение; A1 и А3 — нижняя и верхняя критические точки; Мн — температура начала мартенситного превращения. Термомеханическая обработка I и IV классов основана на явлении наследования упрочнения, сохраняющегося после соответствующей термической обработки.

Термомеханический эффект

Термомехани'ческий эффе'кт, эффект фонтанирования, появление в сверхтекучей жидкости разности давлений Dр , обусловленной разностью температур DТ (см. Сверхтекучесть ). Т. э. проявляется в жидком сверхтекучем гелии в различии уровней жидкости в двух сосудах, сообщающихся через узкую щель или капилляр и находящихся при разных температурах (рис. , а). Другой наглядный способ демонстрации Т. э. заключается в нагреве излучением трубки, плотно набитой мелким чёрным порошком и опущенной одним концом в сверхтекучий гелий. При освещении порошок быстро нагревается, и в силу термомеханической разности давлений жидкий гелий фонтаном выбрасывается из верхнего конца капилляра (рис. , б). Обратный эффект — охлаждение сверхтекучего гелия при продавливании через узкие щели или капилляры — называется механокалорическим эффектом . В рамках двухкомпонентной модели сверхтекучего гелия Т. э. можно объяснить как выравнивание концентрации сверхтекучей компоненты, свободно протекающей через щель в направлении нагретой части жидкости. В то же время поток нормальной компоненты в обратном направлении невозможен из-за проявления сил вязкости в узкой щели (см. Гелий ). Термодинамика даёт для разности давлений в Т. э. соотношение Dр /DТ = pS, где р — плотность, S — энтропия жидкого гелия.

Лит.: Кеезом В., Гелий, пер. с англ., М., 1949; Мендельсон К., Физика низких температур, пер. с англ., М., 1963.

И. П. Крылов.

Термомеханический эффект: а — уровень жидкости в сосуде с нагревателем Н выше, чем в сообщающемся с ним сосуде; б — фонтанирование гелия при освещении и нагреве порошка П, находящегося в сосуде со сверхтекучим гелием (В — гигроскопическая вата).

Термонастия

Термона'стия, движение органов растений, обусловленное изменением температуры в окружающей среде; см. Настии .

Термопара

Термопа'ра,датчик температуры, состоящий из двух соединённых между собой разнородных электропроводящих элементов (обычно металлических проводников, реже полупроводников). Действие Т. основано на эффекте Зеебека (см. Термоэлектрические явления ). Если контакты (обычно — спаи) проводящих элементов, образующих Т. (их часто называют термоэлектродами), находятся при разных температурах, то в цепи Т. возникает эдс (термоэдс), величина которой однозначно определяется температурой «горячего» и «холодного» контактов и природой материалов, примененных в качестве термоэлектродов.

Т. используются в самых различных диапазонах температур. Так, Т. из золота, легированного железом (2-й термоэлектрод — медь или хромель), перекрывает диапазон 4—270 К, медь — константан 70—800 К, хромель — копель 220—900 К, хромель — алюмель 220—1400 К, платинородий — платина 250—1900 К, вольфрам — рений 300—2800 К. Эдс Т. из металлических проводников обычно лежит в пределах 5—60 мв. Точность определения температуры с их помощью составляет, как правило, несколько К, а у некоторых Т. достигает ~0,01 К. Эдс Т. из полупроводников может быть на порядок выше, но такие Т. отличаются существенной нестабильностью.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Младший сын князя

Ткачев Андрей Сергеевич
1. Аналитик
Фантастика:
фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Младший сын князя

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Имперец. Том 4

Романов Михаил Яковлевич
3. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 4

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Приручитель женщин-монстров. Том 2

Дорничев Дмитрий
2. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 2

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Возрождение Феникса. Том 1

Володин Григорий Григорьевич
1. Возрождение Феникса
Фантастика:
фэнтези
попаданцы
альтернативная история
6.79
рейтинг книги
Возрождение Феникса. Том 1

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

В теле пацана

Павлов Игорь Васильевич
1. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана