Большая Советская Энциклопедия (ТЕ)
Шрифт:
Т. а. могут быть также использованы для нанесения на оригиналы защитных покрытий с помощью пластикатной плёнки (ламинирование) и изготовления копий на прозрачных плёнках для проекторов.
Лит.: Алферов А. В., Резник И. С., Шорин В. Г., Оргатехника, М., 1973.
А. Я. Манцен.
Рис. 2. Копировальные комплекты (конверты): а — для получения копий при помощи термокопировальной бумаги (косвенный способ); б — для получения копий на термореактивной бумаге (прямой способ).
Рис. 1. Термокопировальный аппарат ТЕКА—II (СССР): а — внешний вид; б — схема; 1 — листопротяжное устройство; 2 — ведущий валик; 3 — стеклянный цилиндр; 4 —
Термокопирование
Термокопи'рование, копировальный процесс, основанный на свойстве термочувствительных материалов изменять своё состояние под действием тепла (инфракрасных лучей). Термокопии изготовляют в термокопировальных аппаратах контактным способом (на просвет или в отражённых лучах) на термореактивной бумаге (прямое, или термохимическое, копирование) либо на носителе копии с помощью термокопировальной бумаги или плёнки (косвенное, или термопластическое, копирование) с оригиналов, выполненных тушью, чёрным карандашом, отпечатанных на пишущей машине или типографским способом (элементы изображения таких оригиналов способны интенсивно поглощать тепло).
При экспонировании в инфракрасном свете светлые участки оригинала (пробелы) отражают большую часть лучей, а тёмные (элементы изображения) — поглощают лучи и при этом нагреваются. При прямом Т. тепло нагретого элемента оригинала вызывает в соприкасающемся с ним участке чувствительного слоя термореактивной бумаги химическую реакцию, вследствие которой образуется контрастное тёмное вещество (рис. , а). При косвенном Т. чувствительный слой термопластической плёнки (или термокопировальной бумаги) под действием тепла расплавляется и переносится на носитель копии (рис. , б). Копии на термореактивной бумаге со временем темнеют вследствие воздействия тепла и света на пробелы, которые остаются теплочувствительными, поэтому срок их хранения ограничен. Термопластичное копирование позволяет получать печатные формы для размножения документов средствами оперативной полиграфии , а также копии для длительного хранения.
Лит.: Алферов А. В., Резник И. С., Шорин В. Г., Оргатехника, М., 1973.
А. Я. Манцен.
Схемы процессов термокопирования: а — прямого, б — косвенного, или переносного; 1 — инфракрасные лучи; 2 — оригинал (непрозрачные элементы изображения зачернены); 3 — термореактивная бумага (чувствительный слой не заштрихован); 4 — термокопия (после химической реакции); 5 — термокопировальная бумага (чувствительный слой не заштрихован); 6 — термокопировальная бумага после копирования; 7 — термокопия.
Термолюминесценция
Термолюминесце'нция,люминесценция , возникающая при нагревании вещества, предварительно возбуждённого светом или жёстким излучением. Наблюдается у многих кристаллофосфоров , минералов, некоторых стекол и органических люминофоров. Механизм Т. — рекомбинационный. При нагревании освобождаются электроны, захваченные ловушками, и происходит излучательная рекомбинация их с ионизованными при возбуждении центрами люминесценции. Т. применяется при исследовании энергетического спектра электронных ловушек в твёрдых телах, а также в минералогии. Центрами люминесценции минералов служат разнообразные структурные дефекты, определяемые условиями образования минералов, а также возникающие при облучении их ионизирующим излучением и при других внешних воздействиях. Спектр Т. минералов и характер высвечивания несут информацию о природе центров свечения, их энергетических параметрах, возрасте пород, их радиационной и термической истории. Наиболее интенсивной и сложной Т. обладают минералы, содержащие примеси редкоземельных элементов (флюорит, апатит, ангидрит и др.), а также многие силикаты (полевой шпат, кварц, содалит и др.), карбонаты, сульфаты.
Лит.: Марфунин А. С., Спектроскопия, люминесценция и радиационные центры в минералах, М., 1975; Thermoluminescence of geological materials, L.— N. Y., 1968.
А. Н. Таращан.
Термомагнитные сплавы
Термомагни'тные спла'вы, ферромагнитные сплавы, имеющие резко выраженную температурную зависимость намагниченности в заданном магнитном поле. Это свойство проявляется в определённом интервале температур вблизи Кюри точек , значения которых у Т. с. находятся
Лит.: Займовский А. С., Чудневская Л. А., Магнитные материалы, М.— Л., 1957, с. 142—44; Прецизионные сплавы. Справочник, под ред. Б. В. Молотилова, М., 1974, с. 156—64.
А. И. Зусман.
Термомагнитные явления
Термомагни'тные явле'ния, группа явлений, связанных с влиянием магнитного поля на электрические и тепловые свойства проводников и полупроводников, в которых существует градиент температуры. Т. я., как и гальваномагнитные явления , обусловлены воздействием магнитного поля на движущиеся частицы, несущие электрический заряд (электроны в проводниках, электроны и дырки в полупроводниках). Магнитное поле искривляет траекторию движущихся зарядов и, в частности, отклоняет текущий по телу электрический ток и связанный с переносом частиц поток теплоты от первоначального направления (см. Лоренца сила ). В результате появляются составляющие электрического тока и теплового потока в направлении, перпендикулярном магнитному полю, и наблюдаются др. явления.
Т. я. можно классифицировать, рассматривая взаимное расположение векторов: напряжённости магнитного поля Н, температурного градиента ~NТ в проводнике, плотности W теплового потока и вектора N, параллельного направлению, в котором измеряется явление. Т. я., измеряемые в направлении, перпендикулярном или параллельном первичному температурному градиенту, называются соответственно поперечными и продольными. Характерным примером Т. я. может служить возникновение в проводнике (металле) или полупроводнике электрического поля Е, если в теле имеется градиент температуры и в перпендикулярном к нему направлении накладывается магнитное поле Н (Нернста — Эттингсхаузена эффект ). Возникшее поле Е имеет как продольную, так и поперечную составляющие. К Т. я. относится также Риги — Ледюка эффект и ряд др. явлений.
Лит.: Блатт Ф. Д., Теория подвижности электронов в твердых телах, пер. с англ., М.—Л., 1963; Цидильковский И. М., Термомагнитные явления в полупроводниках, М., 1960.
Термометр
Термо'метр (от термо ... и... метр ), прибор для измерения температуры посредством контакта с исследуемой средой. Применение Т. исключительно разнообразно: существуют Т. бытового употребления (комнатные, для воздуха и воды, медицинские и др.); Т. технического применения, высокоточные Т. для исследовательских и метрологических работ и др. Действие Т. основано на таких физических свойствах, как тепловое расширение жидкостей, газов и твёрдых тел; на температурной зависимости давления газа или насыщенных паров, электрического сопротивления, термоэлектродвижущей силы, магнитной восприимчивости парамагнетика и т. д. (см. Термометрия ).