Большая Советская Энциклопедия (ТР)
Шрифт:
Тригонометрический ряд
Тригонометри'ческий ряд , функциональный ряд вида
то есть ряд, расположенный по синусам и косинусам кратных дуг. Часто Т. р. записываются в комплексной форме
Числа an , bn или cn называют коэффициентами Т. р.
Т. р. играют весьма важную роль в математике и её приложениях. Прежде всего Т. р. дают средства
Т. р. впервые появляются в работах Л. Эйлера («Введение в анализ бесконечно малых», 1748; Письмо к Х. Гольдбаху от 4 июля 1744), например:
Эйлер указал на связь между степенными рядами и Т. р.: если
а именно:
были впервые указаны А. Клеро (1757), а их вывод посредством почленного интегрирования Т. р. был дан Эйлером в 1777; впрочем, формулы для a и a1 встречаются еще раньше у Ж. Д'Аламбера (1754).
Т. р. привлекли к себе интерес крупнейших математиков 50—70-х гг. 18 в. в связи со спором о колебании струны. В частности, Д. Бернулли впервые высказал утверждение, что «произвольная» функция может быть разложена в Т.. р. Однако в то время понятие функции было ещё недостаточно отчётливым (см. Функция ). Утверждение, что функции весьма общего вида действительно могут быть разложены в Т. р., было вновь высказано и постоянно выдвигалось Ж. Фурье (1811); он систематически пользовался Т. р. при изучении задач теплопроводности. Весьма широкий класс Т. р. по праву носит его имя (см. Фурье ряд ). После исследований Фурье Т. р. прочно вошли в математическую физику (С. Пуассон , М. В. Остроградский ). Существенный прогресс теории Т. р. в 19 в. был связан с уточнением основных понятий математического анализа и созданием теории функций действительного переменного. Так, П. Дирихле (1837), уточнив понятие произвольной функции, получил первый общий признак сходимости рядов Фурье; Г. Ф. Б. Риман исследовал понятие интеграла и установил необходимое и достаточное условие интегрируемости функций в связи с исследованиями по Т. р.; исследования, относящиеся к изображению функций Т. р., привели Г. Кантора к созданию теории множеств; наконец, А. Лебег (1902—06), применив развитые им понятия меры и интеграла к теории Т. р., придал ей современный вид. Важный вклад в теорию Т. р. внесли Н. Н. Лузин , Д. Е. Меньшов и др.
Лит.: Лузин Н. Н., Интеграл и тригонометрический ряд, М. — Л., 1951; Барин. К., Тригонометрические ряды, М., 1961; Зигмунд А., Тригонометрические ряды, пер. с англ., 2 изд., т. 1—2, М., 1965.
Тригонометрическое уравнение
Тригонометри'ческое уравне'ние , алгебраическое уравнение относительно тригонометрической функций неизвестного аргумента. Для решения Т. у., пользуясь различными соотношениями между тригонометрическими функциями , преобразуют Т. у. к такому виду, чтобы можно было определить значения одной из тригонометрических функций искомого аргумента. После этого корни Т. у. получаются с помощью обратных тригонометрических функций . Например, sin х + sin 2x + sin Зх = 0 можно привести к виду 2 sin 2x cos х + sin 2x = 0 или sin 2x (2cos х + 1) = 0, откуда sin 2x = 0 или же cos х = —1/2; это даёт решения Т. у. х = Arc sin 0 = и х = Arc cos ( — ) = 2/3p(Зn ± ), где n — произвольное целое число (положительное или отрицательное).
Тригонометрия
Тригономе'трия (от греч. tr'igonon — треугольники ¼метрия ), раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Т. делится на плоскую, или прямолинейную, и сферическую тригонометрию . Теория тригонометрических функций (гониометрия) и её приложения к решению плоских прямоугольных и косоугольных треугольников изучаются в средней школе.
Основные формулы плоской Т. Пусть а , b , с — стороны треугольника, А , В , С — противолежащие им углы (А +В +С = p), ha , hb , hc — высоты, 2p — периметр, S — площадь, 2R — диаметр окружности, описанной около треугольника. Теорема синусов:
теорема косинусов:
a2 = b2 + c2 — 2bc cos A ,
теорема тангенсов:
площадь треугольника:
Углы треугольника, если известны стороны, могут быть найдены по теореме косинусов или по формулам вида:
Плоская Т. начала развиваться позже сферической, хотя отдельные теоремы её встречались и раньше. Например, 12-я и 13-я теоремы второй книги «Начал» Евклида (3 в. дон. э.) выражают по существу теорему косинусов. Плоская Т. получила развитие у аль-Баттани (2-я половина 9 — начало 10 вв.), Абу-ль-Вефа (10 в.), Бхаскара (12 в.) и Насирэддина Туси (13 в.), которым была уже известна теорема синусов. Теорема тангенсов была получена Региомонтаном (15 в.). Дальнейшие работы в области Т. принадлежат Н. Копернику (1-я половина 16 в.), Т. Браге (2-я половина 16 в.), Ф. Виету (16 в.), И. Кеплеру (конец 16 — 1-я половина 17 вв.). Современный вид Т. получила в работах Л. Эйлера (18 в.).
Лит.: Кочетков Е. С., Кочеткова Е. С., Алгебра и элементарные функции, ч. 1—2, М., 1966.
Тридакны
Трида'кны (Tridacna), род крупных двустворчатых моллюсков. Обитают в прибрежной зоне тропических морей. Несколько видов, среди которых наиболее известна распространённая в Тихом океане Т. гигантская (Т. gigas) с раковиной длиной до 1,4 м , которая весит до 250 кг . Створки раковины одинаковые, очень массивные, без перламутрового слоя, характеризуются радиальной волнистостью, грубыми чешуями и ребрами на поверхности. Жители островов Океании используют раковины Т. как строительный материал и для изготовления домашней утвари, украшений, амулетов, а также в качестве денег для местной торговли.