Большое космическое путешествие
Шрифт:
Но эти элементы по-прежнему заключены в звезде, у них должен быть шанс каким-то образом из нее вырваться – ведь именно из этих элементов мы с вами и состоим! Сегодня известно, что железо – это тупик синтеза. Когда в ядре накапливается железо, синтез останавливается и звезда схлопывается. Когда звезда пытается запустить синтез на основе железа, ее энергия попросту истощается, и схлопывание ускоряется. Звезды должны генерировать энергию, а не поглощать ее. В результате ускоряющегося схлопывания звезда претерпевает гравитационный коллапс, и в центре ее остается сверхплотная нейтронная звезда. При образовании нейтронной звезды выделяется такая кинетическая энергия, которой хватает, чтобы просто сдуть всю оболочку и внешнее ядро. Происходит колоссальный взрыв, звезда несколько недель сияет в миллиарды раз ярче Солнца. Внутренность звезды развеивается по галактике, то есть в межзвездном пространстве,
На рис. 7.5 показана красивая спиральная галактика M51, в которой насчитывается 100 миллиардов звезд. Там все стройно и красиво (сверху), пока не происходит взрыв сверхновой (снизу).
Рис. 7.5. Спиральная галактика M51 и сверхновая. Иллюстрация сделана по материалам статьи J. Richard Gott, Robert J. Vanderbei, Sizing Up the Universe, National Geographic, 2011
Как будет рассказано в главе 12, мы живем в спиральной галактике, чем-то напоминающей М51. До взрыва (верхний снимок) видна и галактика, и, на переднем плане, некоторые звезды Млечного Пути, которые гораздо ближе к нам и (естественно) обладают гораздо меньшей светимостью, чем галактика. Когда происходит такой взрыв, мы видим в галактике новую звезду (нижний снимок). Раньше ее и видно не было, а теперь она – самая яркая точка в галактике. Это всего одна звезда. Будь вы планетой, вращающейся вокруг этой звезды, от вас осталась бы головешка. Без преувеличения, вот так просто. Такие звезды называются сверхновыми. В древности считалось, что при подобном взрыве в небе загорается новая звезда. Сегодня известно, что на самом деле это звездная агония. Не всем звездам такое суждено; лишь относительно массивные могут превратиться в сверхновые. После взрыва на месте сверхновой остается крошечная сверхплотная нейтронная звезда – это происходит, когда все внешние оболочки звезды разлетятся в стороны. Бывают и еще более массивные звезды. И они тоже взрываются. Но при коллапсе такой звезды пространство в ее центре искривляется под действием гравитации настолько сильно, что эта область отсекается от всей остальной Вселенной, и получается… вы угадали, черная дыра. Иногда черная дыра может формироваться в центре звезды уже на этапе отбрасывания газовых оболочек – в таких случаях также происходит взрыв сверхновой.
Стивен Хокинг занимается исследованием черных дыр; он совершил важнейшие открытия, связанные с их странными свойствами. Рич гораздо подробнее расскажет вам о черных дырах и об открытиях Хокинга в главе 20. В «Симпсонах» Хокинга назвали самым умным из живущих ныне людей. Большинство из нас с этим согласны.
Теперь позвольте рассказать о рождении звезд. Туманность Ориона – это «звездная колыбель» – область звездообразования. Это газовое облако, уже насыщенное тяжелыми элементами, выплавленными в ядрах более древних звезд, уже погибших.
В центре туманности – яркие новорожденные массивные звезды, относящиеся к классам O и B. Они ярко светят в ультрафиолетовом диапазоне спектра. Такое жаркое УФ-излучение состоит из фотонов, обладающих достаточной энергией, чтобы ионизировать водород в центре туманности (то есть отрывать электроны от ядер). Газ стремится сконцентрироваться в виде новых звезд, но этому мешает огромная светимость массивных звезд, расположенных в центре туманности. Тем временем этот газ, насыщенный тяжелыми элементами, уже может порождать и более интересные объекты, нежели просто туманные облачка. В нем также могут формироваться твердые шарообразные тела, содержащие кислород, кремний, железо, – такие тела напоминают землеподобные планеты. Возле некоторых новорожденных звезд планетарные системы также могут образовываться из окутывающего их газа. Это юные солнечные системы, возникающие на месте вращающихся газопылевых дисков (рис. 7.6). В туманности Ориона эти процессы продолжаются и прямо сейчас. В некоторых звездных колыбелях рождаются тысячи и тысячи солнечных систем. В нашей Галактике 300 миллионов звезд, многие из них имеют собственные планетные системы.
Какова наша роль в этой картине? Мы крошечные и несущественные в космических масштабах. Удручающее известие для тех, кому нравится чувствовать себя великим. У этой проблемы богатая история. Всякий раз, когда мы претендовали на космическую исключительность (мы в центре Вселенной и она вращается вокруг нас; либо мы состоим из особой материи,
Рис. 7.6. Протопланетные диски вокруг новорожденных звезд в туманности Ориона. Фотография космического телескопа «Хаббл». Снимки предоставлены: M.J. McCaughrean (Институт астрономии общества Макса Планка), C.R. O’Dell (Университет Райса), NASA
Рис. 7.7. Глубокое поле телескопа «Хаббл». На этой фотографии с длительной экспозицией, сделанной с космического телескопа «Хаббл», показано около 10 000 галактик. Но Область глубокого обзора занимает лишь 1/13 миллионных всего неба. Следовательно, в области обзора телескопа «Хаббл» на всем небе находится примерно 130 миллиардов галактик. Снимки предоставлены: NASA, Европейское космическое агентство, С. Беквит (Научный институт космического телескопа) и группа изучения Области глубокого обзора. Цветные снимки подготовлены Nick Wherry, Michael Blanton, David W. Hogg (университет Нью-Йорка), Robert Lupton (Принстонский университет)
Позвольте мне еще более уничижительное сравнение. На рис. 7.7 показан один из снимков, сделанных космическим телескопом «Хаббл». Каждое пятнышко на картинке – это целая галактика. Галактики настолько далекие, что каждая из них занимает лишь крошечную часть снимка. В каждом из этих пятнышек кроется более 100 миллиардов звезд. И это всего лишь небольшой закоулок Вселенной. Этот участок, именуемый Глубоким полем «Хаббла», – снимок наиболее далекого предела Вселенной, который нам известен. В этой области около 10 тысяч галактик. Вся эта область занимает примерно 1/65 от площади полной Луны или 1/13 миллионной всего неба. Поскольку этот участок неба ничем не примечателен, потенциально количество галактик может оказаться в 13 миллионов раз больше, чем на этом снимке. То есть в пределах досягаемости обзора космического телескопа «Хаббл» находится 130 миллиардов галактик.
Карл Саган в своей книге «Голубая точка» писал, что все, кого мы знали, все, о ком когда-либо читали в исторических книгах, жили на Земле – этой крошечной пылинке во Вселенной. Я часто об этом задумываюсь. Ведь разум подсказывает: «я так мал», сердце говорит «я так мало», но теперь вы сильны и, читая эту книгу, будете все увереннее мыслить масштабно, а не мелко. Почему? Потому что теперь вы в курсе законов физики, знаете о механизмах устройства Вселенной. Фактически знания астрофизики вдохновляют, позволяют вам взглянуть в небо и сказать: «Нет, я чувствую себя не малым, а великим, поскольку человеческий мозг – какой-то килограмм серого вещества – смог все это осознать. А какие тайны меня еще только ожидают!»
Глава 8
Жизнь и смерть звезд (II)
Автор: Майкл Стросс
В этой главе мы немного подробнее обсудим, как устроены звезды, и поможет в этом информация, которую вы получили из предыдущей главы. В каком случае объект можно считать звездой? Астрономы определяют звезду как самогравитирующий объект, в центре которого протекают термоядерные реакции. «Самогравитирующий» – означает «такой, целостность которого поддерживается благодаря гравитации». Земля также остается целостной благодаря силе гравитации. На самом деле, у объекта, сравнимого по массе с Землей, сила гравитации гораздо больше внутренней прочности горных пород. Посудите сами: ведь Земля шарообразная, как и звезды. Гравитация действует одинаково во всех направлениях, и если целостность объекта обусловлена гравитацией, то этот объект напоминает по форме шар. Более мелкие объекты, например астероиды, сохраняют целостность именно благодаря прочности горных пород либо вообще представляют собой бесформенные кучи щебня – зачастую довольно глыбистые и продолговатые (рис. 8.1).
Но у больших массивных объектов, например Солнца, гравитация настолько превосходит остальные силы, что вся масса спрессовывается в виде сферы – это наиболее компактная конфигурация. Если большой самогравитирующий объект быстро вращается, то он будет не совсем круглым. Из-за вращения сфера уплощается. Сам Исаак Ньютон это понимал. Юпитер довольно быстро вращается, поэтому напоминает по форме эллипс; его экваториальный радиус примерно на 7 % больше полярного. Наиболее грандиозные примеры такого сплющивания при вращении – это спиральные галактики, которые мы обсудим в главе 13.