Борьба за скорость
Шрифт:
Для того чтобы получить большие окружные скорости, можно воспользоваться не одним электрическим током.
Там, где ток, — там и нагрев. А где нагрева быть не должно, нужен и другой привод, не электрический, а пневматический.
Силой воздушной струи воспользовались инженеры, чтобы получить огромные числа оборотов. Очень легкие воздушные турбинки небольших размеров вращают шпиндели шлифовальных станков и авиационные гироскопы. Их широко применяют и в ручных инструментах.
Турбинный диск с лопатками делается из алюминиевого сплава. Прочность и легкость сочетает в себе такой
При работе турбинка почти не нагревается. В этом ее преимущество перед электромотором. Но есть у нее и недостаток — она не выдерживает строго постоянного числа оборотов. Ее и применяют там, где с этим можно мириться.
Подшипники, приспособленные для больших скоростей, точно изготовленные, с надежными сепараторами, стойко выдерживают огромные числа оборотов. В воздушных турбинках встречаются и упрощенные быстроходные подшипники без сепараторов и внутренних колец. В них можно применить также подшипники с газовой смазкой.
Особо быстроходные турбинки для центрифуг дают, как и электромоторы, до 150 тысяч оборотов при подшипниках с жидкой смазкой.
Всего несколько капель смазки в час достаточно для таких подшипников. Ее можно подать и без масленки: струя воздуха большой скорости распыляет смазку и одновременно охлаждает подшипник.
Воздух вращает турбину, помогает смазке и может сам служить для смазки.
При небольшом диаметре вращающегося ротора можно получить чрезвычайно большие, сверхвысокие скорости — до четверти миллиона оборотов в минуту!
А в одном из опытов с крошечным ротором диаметром около сантиметра с газовой смазкой удалось получить свыше миллиона оборотов в минуту!
Это показывает, как велик может быть рост скоростей. Но, конечно, лишь в опытах с миниатюрными приборами можно пока что получать такие сверхвысокие скорости вращения.
Строились воздушные турбинки, рассчитанные на 600–700 тысяч оборотов. Но чем больше оборотов, тем сильнее закручивается воздушный поток, тем труднее становится устойчивая работа. И не выдерживает турбинка, если увеличивается нагрузка, — падает число оборотов.
Практически нам нужны пока обороты в десятки и одну-две сотни тысяч в минуту. Их обеспечивают электромотор и воздушные турбинки там, где нагрузки невелики. Для больших нагрузок на больших скоростях нужны уже не воздушные, а иные турбины — паровые и газовые, вращаемые силой струи пара или газа.
Быстроходный привод — часть высокоскоростной машины, ее сердце.
Какую бы из отраслей современного машиностроения мы ни взяли, везде создание быстроходного привода есть часть — и важнейшая — борьбы за скорость.
Электрические, воздушные и тепловые двигатели служат приводами самых разнообразных быстроходных машин, — от электрического генератора до шлифовального станка, от центрифуги до переносного ручного инструмента, от компрессора до гироскопа.
Нужно не только получить высокую скорость, но и передать ее, чтобы заставить работать все эти машины.
Высокоскоростной
Машина, по классическому определению Маркса, состоит из трех частей: двигателя, передаточного механизма и машины-орудия.
Двигатель создает движение, передача передает его, а орудие использует, чтобы выполнять полезную работу.
И нужно соединить генератор с паровой турбиной, электромотор — с центрифугой или станком, гироскоп — с воздушной турбинкой, компрессор — с газовой турбиной, чтобы использовать полученное с таким трудом вращение.
Для этого и нужна передача.
Мотор и машину соединяют ремнем, надетым на шкивы, — колеса с ободом. Такую простую передачу видели, конечно, все. Она исправно работает на небольших скоростях, но капризничает, если скорости растут.
Ремень начинает быстро истираться. Он «проскальзывает», «буксует», как колеса автомашины на скользком месте, вытягивается и провисает. От былого натяжения не остается и следа.
Вдобавок, вокруг быстро вращающегося шкива возникают воздушные вихри, сильно мешающие работе. С ними трудно справиться.
Сопротивление воздуха вообще ощутительно мешает при больших скоростях. Опытным путем установлено, что при 2 600 оборотах в минуту мощность привода расходуется так: на борьбу с трением в подшипниках 3,5 процента, а на борьбу с сопротивлением воздуха — все остальное, 96,5 процента! Комментарии, как говорят, излишни.
Лишь примерно до 100 оборотов в минуту с сопротивлением воздуха можно не считаться. Но при сотнях и тысячах оборотов — это серьезный противник.
Шлифовальный шпиндель с воздушной турбинной.
Вот что произошло, когда испытывали впервые новую быстроходную передачу.
Ремень отказывался совсем работать без поддержки натяжным роликом. Он беспомощно провисал, быстро растягиваясь и не поспевая за шкивом, буксовал, а от трения о шкив нагревался так сильно, что резина на нем плавилась. Закапризничав, ремень не хотел сцепляться со шкивом, отпрыгивал от него и, провисая все больше и больше, задевал верхней частью нижнюю и рвался мгновенно.
Стоило ремню чуть-чуть перекоситься, как он начинал задевать за выступ — бортик шкива, и вскоре края его превращались в лохмотья. В местах, где были швы, появлялись обрывки ниток. Быстро истираясь, ремень рвался сначала с краев, а затем и весь, как будто он был сделан не из прочного материала, а из бумаги.
На большой скорости разрыв ремня грозит большими осложнениями.
Недаром приходилось помещать при опытах всю передачу в специальном помещении, а за работой ее следить на расстоянии по приборам, как будто испытывался какой-нибудь новый двигатель, вот-вот готовый взорваться.