Цепная реакция. Неизвестная история создания атомной бомбы
Шрифт:
– С другой стороны, согласно современной теории, электрическая природа электрона, определяемая как его заряд, теми же теоретиками рассматривается как характерная особенность той энергии, что концентрируется вокруг точки под названием «электрон». В этом смысле элементарный электрический заряд предстает перед нами некоей частично локальной сущностью, привносящей свою долю энергии в атомарные образования, – посмотрев на изумленного журналиста, изобретатель с улыбкой добавил: – Впрочем, я думаю, что эти мои измышления еще долго никого не заинтересуют, давайте лучше вернемся к вашему обзору…
Журналист растерянно взглянул на изобретателя и, немного запинаясь, продолжил:
– На протяжении всей второй половины XIX века физики активно изучали феномен катодных лучей. Простейший аппарат, с помощью которого за ними
Осознавая, что сейчас он, похоже, весьма «удачно» наступил своему собеседнику на другую больную мозоль, журналист обреченно ждал разгромной критики, ведь, обсуждая статьи ученых по атомной физике и порицая современные теории, изобретатель называл их по меньшей мере несостоятельными, а содержащиеся в них утверждения – необоснованными. Особенно категоричен он был в вопросе об экспериментах, где отмечалось выделение атомами энергии. «Атомная энергия – это иллюзия», – часто говорил изобретатель. Он подготовил для печати несколько заявлений о том, что токами с напряжением в несколько миллионов вольт неоднократно расщеплял бесчисленные миллиарды атомов и знает, что никакая энергия при этом не выделялась. Как-то раз изобретатель довольно сурово потребовал от журналиста отчета за то, что он не опубликовал его заявления, на что тот попробовал возразить:
– Я не сделал этого, чтобы не портить вам репутацию. Вы придаете слишком большое значение последовательности, но нет никакой необходимости хранить верность тем теориям, которым вы следовали в юности. Я уверен, что в глубине души вы поддерживаете новые гипотезы, соответствующие научным достижениям в других областях, но, поскольку вы не согласны с некоторыми современными теориями и критикуете их, то считаете, что должны быть последовательным и осуждать гипотезы все без исключения. Я убежден, что во время разработки прибора для получения «луча смерти» ваши рассуждения соответствовали современной теории строения атома и природы материи и энергии.
В ответ на это заявление изобретатель совершенно недвусмысленно объяснил журналисту, что имеет очень четкую позицию относительно тех, кто пытается думать за него. Разговор между ними состоялся примерно в 1935 году, и потом Джон много месяцев не имел от него известий. Но уже при следующей встрече он заметил, что позиция изобретателя значительно смягчилась и в своих последних комментариях он стал гораздо менее категоричен в отношении современных теорий. А несколько позже изобретатель неожиданно заявил, что и сам планирует создать аппарат для точной проверки современной теории строения атома. При этом он как бы между прочим обронил замечание, что его новая энергосистема и энергетический луч будут гораздо эффективнее высвобождать атомную энергию, чем любое из используемых физиками устройств.
Может быть, для науки является счастливым обстоятельством то, что Фарадей не был собственно математиком, хотя он был в совершенстве знаком с понятиями пространства, времени и силы. Поэтому он не пытался углубляться в интересные, но чисто математические исследования, которых требовали его открытия. Он был далек от того, чтобы облечь свои результаты в математические формулы, либо в те, которые одобрялись современными ему математиками, либо в те, которые могли бы дать начало новым начинаниям. Благодаря этому он получил досуг, необходимый для работы, соответствующей его духовному направлению, смог согласовать идеи с открытыми им фактами и создать если не технический, то естественный язык для выражения своих результатов.
– О чем вы задумались, Джон? Прошу вас, продолжайте, – прервал голос из кресла воспоминания журналиста. Тот поспешно зашуршал листками и, найдя нужный абзац, прочитал:
– У каждой стороны имелись веские доказательства в пользу своей гипотезы. Наконец в 1897 году молодой английский физик Джозеф Томсон положил конец этим спорам раз и навсегда, а заодно прославился в веках как первооткрыватель первой элементарной частицы – электрона. Используя трубку новой конструкции, Томсон выяснил, что соотношение между электрическим и магнитным полями, при котором их действие уравновешивается, зависит от скорости, с которой движутся частицы. Проведя ряд измерений, ученый смог определить скорость движения катодных лучей, которая оказалась значительно меньше скорости света, из чего следовало, что катодные лучи могут быть только частицами. Эти неизвестные частицы Томсон назвал «корпускулами», но вскоре они стали называться «электронами». Сразу же стало ясно, что они обязаны существовать в составе атомов – иначе откуда бы они взялись? 30 апреля 1897 года – дата доклада Томсоном о полученных им результатах на заседании Лондонского королевского общества – считается днем рождения электрона. И в этот день отошло в прошлое представление о «неделимости» атомов. Вместе с последовавшим через десять с небольшим лет открытием атомного ядра открытие электрона заложило основу современной модели атома.
– Ну что же вы, Джон, продолжайте, – иронично поглядывая на литератора из-под густых темных бровей, поторопил изобретатель.
Вздохнув, О’Нил вернулся к своему обзору:
– В 20-е годы, после введения первичных квантовых принципов, субатомный мир представлялся крайне простым. Всего два вида элементарных частиц – протоны и нейтроны – составляли ядро атома (хотя экспериментально существование нейтронов и было подтверждено лишь в 1930-е годы), и один вид частиц – электроны – существовал за его пределами, вращаясь вокруг него на орбитах. Казалось, все многообразие Вселенной выстроено из этих трех частиц.
Увы, столь простой картине мира суждено было просуществовать недолго. Ученые, оборудовав высокогорные лаборатории по всему миру, принялись за изучение состава космических лучей, бомбардирующих нашу планету, и вскоре начали открывать всевозможные частицы, не имеющие ни малейшего отношения к вышеописанной идиллической триаде. В частности, были обнаружены совершенно немыслимые по своей природе античастицы.
Мир античастиц – своего рода зеркальное отражение знакомого нам мира. Масса античастицы в точности равняется массе частицы, которой она вроде бы соответствует, но все ее остальные характеристики противоположны прообразу. Например, электрон несет отрицательный электрический заряд, а парная ему античастица, «позитрон» (производное от «позитивный электрон») – положительный. У протона заряд положительный, а у антипротона – отрицательный. И так далее. При взаимодействии частицы и парной ей античастицы происходит их взаимная аннигиляция – обе прекращают свое существование, а их масса преобразуется в энергию, которая рассеивается в пространстве в виде вспышки фотонов и прочих сверхлегких частиц.
Все следующие за позитроном античастицы были опытным путем обнаружены уже в лабораторных условиях – на ускорителях. Сегодня физики-экспериментаторы имеют возможность буквально штамповать их в нужных количествах для текущих опытов, и античастицы давно не считаются чем-то из ряда вон выходящим. В начале XX столетия стало ясно, что атомы отнюдь не являются элементарными «кирпичиками» материи, а сами имеют сложную структуру и состоят из еще более элементарных частиц – нейтронов и протонов, образующих атомные ядра, и электронов, которые эти ядра окружают. И снова усложненность на одном уровне, казалось бы, сменила простота на следующей стадии детализации строения вещества. Однако и эта кажущаяся простота продержалась недолго, поскольку ученые стали открывать все новые и новые элементарные частицы. Труднее всего было разобраться с многочисленными адронами – тяжелыми частицами, родственными нейтрону и протону, которые, как выяснилось, во множестве рождаются и тут же распадаются в ходе различных ядерных процессов.