Чтение онлайн

на главную

Жанры

Чего не знает современная наука
Шрифт:

Эта последняя грань вплотную примыкает к философскому аспекту, который можно сформулировать таким образом: что такое человек и что мы воспроизводим путем создания генетической копии? Во многих философских и религиозных концепциях человек рассматривается как нечто состоящее не только из физического тела, но и из «более тонких субстанций», наличие которых и составляет саму загадку жизни. В христианстве они носят названия Духа или Души, и распоряжаться ею мы не вправе. Восточная философская традиция построена на представлении о реинкарнации, то есть циклическом воплощении души в физическом теле. Согласно ему, тело человека – лишь временное пристанище души, проходящей долгий путь совершенствования через земные испытания. Если это так, хотя бы не буквально, а символически, то не будет ли рукотворное создание человеческих копий преступлением против природы, вызванным элементарным

незнанием или пренебрежением принципами, которых наука пока еще не понимает? Не наполнится ли в результате наш мир монстрами-биороботами, лишенными души – а значит, любви, сострадания, добра, чувства прекрасного и справедливости?

Хронология клонирования

1883 год

Открытие яйцеклетки немецким цитологом Оскаром Гертвигом.

1943 год

Сообщение об успешном оплодотворении яйцеклетки «в пробирке».

1973 год

Первые сообщения о возможности рождения человека «из пробирки».

1977 год

Впервые на место ядра яйцеклетки с одинарным набором хромосом искусственно внесено ядро соматической клетки с двойным числом носителей генетической информации. Таким методом произведено на свет более 50 лягушек.

1981 год

Получение трех клонированных эмбрионов (зародышей) человека. Их развитие искусственно приостановлено.

1985 год

Рождение девочки, зачатой не из яйцеклетки выносившей ее матери (Лондон). Парламентский запрет на эксперименты с человеческими эмбрионами старше четырнадцати дней.

1987 год

Эксперимент по разделению клеток человеческого зародыша и клонированию их до стадии 32 клеток. Угроза американской администрации лишить лабораторию дотаций из федеральных фондов, если в них будут проводиться подобные опыты.

1997 год

Сообщение о рождении овечки Долли (Эдинбург). В конце июня президент Клинтон направляет в конгресс законопроект, запрещающий «создавать человеческое существо путем клонирования и ядерного переноса соматических клеток».

Рождение шести клонированных овец, три из которых несут человеческий ген кровеостанавливающего белка, необходимого людям, страдающим гемофилией (несвертываемостью крови).

2000 год

Сообщение о намерении австралийских ученых клонировать вымершего более 60 лет назад тасманского тигра, беспощадно истребленного людьми. Надежду на успех операции ученым придала находка целой молекулы ДНК в заспиртованном в 1886 году теле тигренка.

Американские ученые впервые в мире проводят клонирование примата – обезьяны макаки.

Группа ученых из Великобритании, заявила, что клонирование эмбрионов человека позволит медикам создавать совершенно здоровые человеческие органы, например почки или печень.

Алексей Чуличков, д-р физ. – мат. наук, МГУ

Эти таинственные числа

Математика о хаосе

Понятие «Хаос» в философских теориях древности означало бесконечное пространство, существовавшее до начала мира. В греческой мифологии это беспорядочная субстанция, из которой возник порядок – вселенная, вышли боги, люди, Земля, небесные светила. На протяжении нескольких тысячелетий это понятие было достоянием философии и мифологии, науке же предоставлялось описание «упорядоченного мира» – Космоса в понимании античных философов.

В современном мире с понятием хаоса связывается неповторяющаяся, нерегулярная, беспорядочная последовательность состояний. Буквально несколько десятилетий назад считалось, что такие процессы крайне редки, а природа развивается непрерывно, без резких скачков. Действительно, вся классическая физика «механика Ньютона и Галилея, электродинамика Максвелла, статистическая физика – и отчасти современная, например квантовая теория, оперируют с понятиями функции и отображения, геометрическим образом которого является кривая или поверхность. Галилею принадлежит фраза: «Вся наука записана в великой книге – я имею в виду Вселенную, – которая всегда открыта для нас, но которую нельзя понять, не научившись понимать язык, на котором она написана. А написана она на языке математики, и ее буквами являются треугольники, окружности и другие геометрические фигуры, без которых человеку невозможно разобрать ни одного ее слова; без них он подобен блуждающему во тьме». Во времена Галилея под функцией понималось лишь то, что в современной математике называют непрерывной функцией – ее график можно нарисовать, не отрывая пера от бумаги. Такой подход к описанию природы заранее исключал возможность рассмотрения полного беспорядка – хаоса.

Однако с развитием понятия функции усложнялись и геометрические образы, которыми оперировали физики для описания природы. Достаточно сложные математические объекты – такие, например, как функция, имеющая разрыв в каждой точке (функция Дирихле), непрерывная линия, плотно заполняющая весь квадрат, или множество точек плоскости, не имеющее площади, – стали рассматриваться около 100 лет назад. Геометрические образы этих абстрактных математических объектов довольно трудно представить и невозможно нарисовать. Эти примеры могут показаться пустой игрой ума, однако существуют и природные образования, явления и процессы, для описания которых необходимо привлечение математических объектов со столь экзотическими свойствами, получивших название фракталов. Эти объекты и лежат в основе современной теории хаотических процессов.

Почему хаос казался экзотикой несколько лет назад? Потому что эволюцию систем со времен Лапласа принято описывать, задавая их начальное состояние и скорость его изменения; для этого и была создана прекрасно работающая на практике теория дифференциального исчисления. С математической точки зрения поведение системы в любой момент времени полностью определено, если выполняются условия существования и единственности решения соответствующего дифференциального уравнения. Долгое время считалось, что в такой определенной (детерминированной) системе не может возникать хаоса, ведь решение этого уравнения – «гладкая», то есть непрерывная и дифференцируемая, функция. Лишь на границе XIX и XX веков Анри Пуанкаре обнаружил, что в некоторой гамильтоновой механической системе могут появляться хаотические движения. Эти примеры были восприняты современниками как парадокс.

Однако сейчас стало совершенно ясно, что если речь идет о достаточно сложной нелинейной системе, то ее хаотическое состояние – скорее правило, нежели исключение, оно является неотъемлемым свойством таких реальных систем. К настоящему времени открыто множество динамических систем, в которых возникают состояния нерегулярного, хаотического движения. Прекрасной иллюстрацией служат забавные механические игрушки, появившиеся сейчас в продаже, – маятники на карданных подвесах, причудливые движения которых приковывают к себе взгляд и завораживают, подобно текущей воде или огню. Подчеркнем, что такое поведение не является следствием ни случайного возмущающего воздействия – такие воздействия не включены в модель системы, приходящей к хаосу, – ни бесконечного числа степеней свободы – хаос возникает уже в системах, описываемых тремя координатами, – ни неопределенности (классической или квантовой) в начальных данных. Причина появления хаотических режимов кроется в нелинейной природе динамической системы и ее неустойчивости, проявляющейся в необычайно быстром разбегании первоначально близких траекторий: при достаточно большом удалении состояния системы от начального включаются нелинейные механизмы, возвращающие траекторию в окрестность начальной точки; вследствие неустойчивости ее вновь отбрасывает, и за счет этого происходит беспорядочное запутывание траектории. Заметим, что в линейных моделях, с которыми работала наука XVII–XIX веков и даже начала нашего столетия, хаотических режимов не возникает – они являются свойством исключительно нелинейных систем.

Интересно, что теоретически хаотическая траектория воспроизводится полностью, если создать точно такие же начальные условия, однако сколь угодно малые возмущения начального состояния приводят к абсолютно не похожему поведению системы. На практике это означает, что невозможно предсказать поведение хаотической системы на большой период времени, так как повторить начальные условия и проводить вычисления можно лишь с определенной точностью; по сути дела, это свойство хаотических систем – необычайная чувствительность к малым воздействиям – означает конец эпохи лапласовского детерминизма. Одно из далеко идущих следствий этого свойства иллюстрируется примером так называемой бабочки Лоренца: взмах крыльев бабочки может повлиять на климат Земли в глобальном масштабе, так как атмосфера является сложной нелинейной системой с неустойчивыми режимами.

Поделиться:
Популярные книги

Последний Паладин. Том 6

Саваровский Роман
6. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 6

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника

Live-rpg. эволюция-3

Кронос Александр
3. Эволюция. Live-RPG
Фантастика:
боевая фантастика
6.59
рейтинг книги
Live-rpg. эволюция-3

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника

Неудержимый. Книга IX

Боярский Андрей
9. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IX

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Ярость Богов

Михайлов Дем Алексеевич
3. Мир Вальдиры
Фантастика:
фэнтези
рпг
9.48
рейтинг книги
Ярость Богов

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2