Чтение онлайн

на главную

Жанры

Чего не знает современная наука
Шрифт:

Алексей Чуличков, д-р физ. – мат. наук, МГУ

Фрактальная Вселенная: гармония природы

Бурлящий поток воды, пляшущий огонь костра, даже морозный рисунок на оконном стекле завораживают нас новизной постоянно обновляющихся фрагментов и в то же время ощущением ритма, неуловимой повторяемости деталей. Размышляя над изменчивостью и постоянством этих картин, философ придет к мысли о существовании единого принципа, связующего начала, присутствующего во всех явлениях природы; человек, не искушенный в науках, отнесет все на волю божью. Физик же или математик предложит свое объяснение: он будет говорить о законах природы, описываемых математическими моделями.

Мистика
чисел и геометрических фигур

Мысль о том, что явления реального мира могут подчиняться математическим законам, возникла еще в античности. Язык математики тех времен был достаточно беден по сравнению с современным, его «словами» были числа и геометрические фигуры. Но уже тогда правила геометрии, применяемые при разметке участков земли или при строительстве, правила действия с числами при подсчете урожая, в астрономических расчетах или в торговле давали точный ответ и никогда не подводили. Язык чисел и фигур был достаточно выразительным и универсальным, он позволял действительно находить то общее, что проявляется во многих явлениях реальности, на первый взгляд, казалось бы, совершенно не связанных между собой.

Предсказательная сила, содержащаяся в математических моделях, в древности настолько поражала ум (да и сейчас поражает, несмотря на привычку к современным техническим чудесам), что в числах и геометрических фигурах видели тайный мистический смысл. Пифагор учил: «Что самое мудрое? – Число». Филолай из Кротона, его ученик, писал: «Все, что познаваемо, имеет число, без него ничего нельзя ни помыслить, ни познать». Платон (в диалоге «Парменид, или Об идеях»), а за ним и неоплатоники, в частности, Прокл, выстраивают иерархию Космоса от Единого через «сверхсущие» единицы – непознаваемых богов (по сути, через числа) к «сущим», т. е. умопостигаемым богам. Числа в древности несли в себе не только обозначение количества, но и великие принципы – Единство, Двойственность, Троичность и т. п., – свойственные всему мирозданию. Пользуясь числами как символами, античные философы описывали процесс рождения Космоса, т. е. то, как из Единого (обозначаемого единицей) возникает множественность форм.

Можно ли измерить свойства мира?

Со временем мистический смысл математики теряется, на первый план выступает ее прикладной аспект. Но суть математики как всеобщего языка природы признается и поныне; мы верим, что, пользуясь этим языком, можно найти и выразить неуловимую общность, единое начало, исток всех явлений, то, что связывает весь мир.

На чем основана эта вера? Еще в начальной школе мы узнаем, что число – это обозначение количества: числом 3 можно описывать то общее, что содержится в высказываниях «три барана», «три брата», «три яблока», «три медведя» и т. д. Но, оказывается, числами можно характеризовать и качественные свойства мира – такие, например, как протяженность его объектов, тяжесть (вес) тел, высоту звука. Для этого еще в древности была придумана специальная процедура – измерение. Чтобы оценить количественно то или иное свойство объекта, надо задать единицу измерения, эталон – например, эталон длины или веса, – и определить способ подсчета количества эталонов, содержащихся в измеряемом объекте. Так, для определения расстояния между пунктами А и Б нужно подсчитать количество метров, укладывающихся в отрезок прямой, соединяющей точки А и Б, для нахождения веса предмета нужно уравновесить его на коромысле весов с набором гирь в 1 грамм и подсчитать их количество. Приняв за эталон высоты звука единицу длины звучащей струны, натянутой с определенной силой, можно измерить высоту любого звука, приписывая ему длину струны, звучащей в унисон.

Фундаментальное свойство природы – ее измеримость – дает надежду на то, что на пути математической абстракции мы можем найти ответ на вопрос, в чем выражается общее, единое, что связывает разнородные явления мира. Измерение сопоставляет с каждым объектом набор чисел, характеристик его содержания, сути. Отношения между объектами различной природы теперь могут быть выражены на одном языке, достаточно технологичном и содержательном. Догадка древних о том, что числом можно описать свойства любого объекта, дала человеку могущественное средство понимания реальности – сегодня мы называем его наукой.

Отражение «идеального плана» Вселенной – пропорции

Итак, пользуясь эталонами и сравнением, вместо объектов реального мира можно исследовать их абстрактную числовую модель, обобщающую свойства целого класса «похожих» объектов, явлений, процессов. Нельзя ли на этом пути дойти до платоновского мира Идей, отражением которого является наш воплощенный реальный мир? Ведь как было бы замечательно! Есть идеальный план мира, и есть его реальное воплощение. И соответствие этих миров можно было бы проверить, имея единый эталон для измерения их качеств и сравнивая числа. Но вот беда: количественные выражения зависят от эталона, как зависит расстояние между пунктами А и Б от того, в каких единицах мы будем его измерять – в метрах, футах или локтях. А эталон-то выбирает человек, а не Бог, и, значит, полученная модель будет отражать не высшие принципы, а, скорее, наши собственные предпочтения в выборе эталонов. Да к тому же и измерения в мире идеальном для нас недоступны…

Но если миры похожи, то в них подобны не только все элементы, но и соотношения между ними. А ведь отношения величин, измеренных в одних и тех же единицах, уже не зависят от эталона – этому нас учили в средней школе. Действительно, если расстояние от пункта А до пункта Б в семь раз больше, чем от А до В, то их отношение, равное в данном случае семи, сохранится для расстояний, измеренных и в локтях, и в стадиях! Значит, идеальность мира откроется в пропорциях – отношениях количеств.

Таким образом, следы единства явлений природы надо искать в законах пропорций. Если что-то построено по божественным, идеальным законам, то это выражается в отношении количеств, и пропорции любого естественно существующего объекта должны быть идеальны.

Пропорция и музыкальная гармония

Итак, у нас в руках один из ключей к пониманию природы. Но какие пропорции идеальны, а какие – нет? Вслед за античными мудрецами мы часто говорим о «божественной красоте» картины или «божественном звучании» музыки, не разделяя «божественное» и «прекрасное». Может быть, найти идеальные соотношения можно, опираясь на наше чувство красоты?

По этому пути пошли пифагорейцы, взяв за основу красоту созвучий – ведь отличить гармоничное звучание от душераздирающей какофонии может любой человек, не только музыкант. В пифагорейской теории музыки для анализа приятных на слух созвучий – консонансов – использовался инструмент, состоящий из одной струны, который назывался «монохорд». Наиболее гармоничное звучание получалось, когда звучали два монохорда, один с полностью открытой струной, другой – со струной, зажатой посредине. Это созвучие, называемое октавой, возникало, когда отношение длин звучащих струн (т. е. отношение высот двух звуков) равнялось 2. Два другие гармоничные созвучия получались при отношении длин струн 2:3 (квинта) и 3:4 (кварта).

Таким образом, если чувство красоты дано человеку для ощущения божественного, а законы прекрасного можно записать в виде математических соотношений, то появляется возможность находить единство (например, божественное происхождение) как в явлениях природы, так и в творениях человека: те объекты или явления, которые существуют по законам простых (целочисленных) пропорций, являются идеальными.

Легенда говорит, что свойства музыкальной гармонии настолько вдохновили Пифагора, что в отношениях целых чисел он стал искать главный ключ к законам мироздания. По его идее, весь мир пронизан вибрациями, и чтобы познать его, надо уметь услышать голоса мира, «музыку сфер», прикоснуться к идеальной пропорциональности вселенских созвучий.

Золотое сечение

Еще одним ярким примером пропорции, закрепляющей мимолетное чувство гармонии в строгих фиксированных математических законах, является так называемое отношение золотого сечения. Первое формальное ее определение содержится в «Началах» Евклида: «Говорят, что отрезок прямой разделен лучшим образом, пропорционально, если целая часть так относится к большей части, как большая к меньшей». Отношение золотого сечения встречается и в природных объектах: в пропорциях человеческого тела, в строении раковины улитки, в рисунке паутины, и в искусстве: архитектуре, живописи, скульптуре, музыке. Построение художественного произведения по законам золотой пропорции стало синонимом его совершенства: Парфенон в Афинах, храм Василия Блаженного в Москве, скульптуры Фидия, полотна Боттичелли, Рафаэля, Леонардо да Винчи, фуги Баха, сонаты Бетховена – везде присутствует золотое отношение.

Поделиться:
Популярные книги

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Бывшая жена драконьего военачальника

Найт Алекс
2. Мир Разлома
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бывшая жена драконьего военачальника

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Жандарм 2

Семин Никита
2. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 2

Императорский отбор

Свободина Виктория
Фантастика:
фэнтези
8.56
рейтинг книги
Императорский отбор

Ищу жену для своего мужа

Кат Зозо
Любовные романы:
любовно-фантастические романы
6.17
рейтинг книги
Ищу жену для своего мужа

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан

Измена. Ты меня не найдешь

Леманн Анастасия
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ты меня не найдешь

Все не случайно

Юнина Наталья
Любовные романы:
современные любовные романы
7.10
рейтинг книги
Все не случайно

Восход. Солнцев. Книга XI

Скабер Артемий
11. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга XI

Ваантан

Кораблев Родион
10. Другая сторона
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Ваантан

Охота на эмиссара

Катрин Селина
1. Федерация Объединённых Миров
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Охота на эмиссара

Лорд Системы 7

Токсик Саша
7. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 7