Человеческое познание его сферы и границы
Шрифт:
Оба вида вероятности требуют обсуждения. Я начну с математической вероятности.
ГЛАВА 2
ИСЧИСЛЕНИЕ ВЕРОЯТНОСТИ
В этой главе я собираюсь трактовать теорию вероятности как ветвь чистой математики, в которой мы выводим следствия определенных аксиом, не стараясь приписать им ту или иную интерпретацию. Относительно «интерпретации» смотри главу 1 четвертой части этой книги. Следует заметить, что, в то время как интерпретация в этой области является спорной, само математическое исчисление диктует здесь ту же меру согласия, как и во всякой другой области математики. Это положение вещей никоим образом не является чем-то
Следуя Джонсону и Кейнсу, мы будем обозначать выражением p/h неопределенное понятие «вероятность p при данном h». Когда я говорю, что это понятие является неопределенным, я имею в виду, что оно определяется только с помощью аксиом или постулатов, которые должны быть перечислены. Все, что удовлетворяет требованиям этих аксиом, является «интерпретацией» исчисления вероятности, и следует думать, что здесь возможно множество интерпретаций. Ни одна из них не является более правильной или более законной, чем другая, но некоторые могут быть более важными, чем другие. Так, среди интерпретаций пяти аксиом Пеано для арифметики та интерпретация, в которой первое число — 0, является более важной, чем та, в которой первое число — 3781; она более важна потому, что позволяет нам отождествить интерпретацию формалистической концепции с концепцией, признаваемой в перечислении. Но сейчас мы отвлечемся от всех вопросов интерпретации и займемся чисто формальной трактовкой вероятности.
Необходимые аксиомы, или постулаты, даются почти одинаково различными авторами. Следующие формулировки взяты у профессора Ч. Д. Брода. Эти аксиомы таковы:
1. Если даны p и h, то существует только одно значение p/h. Мы поэтому можем говорить о «данной вероятности p при данном h».
2. Возможные значения выражения p/h суть все действительные числа от 0 до 1, включая и то и другое. (В некоторых интерпретациях мы ограничиваем возможные значения рациональными числами; этот вопрос я буду рассматривать ниже.)
3. Если h имеет значение p, то p/h=1 (мы употребляем «1» для обозначения достоверности).
4. Если h имеет значение не-p, то p/h=0 (мы употребляем «О» для обозначения невозможности).
5. Вероятность p и q при данном h есть вероятность p при данном h, помноженная на вероятность q при данных p и h, и является также вероятностью q при данном h, помноженной на вероятность p при данных q и h.
Эта аксиома называется «конъюнктивной».
6. Вероятность p и q при данном h есть вероятность p при данном h плюс вероятность q при данном h минус вероятность p и q при данном h.
Это называется «дизъюнктивной» аксиомой.
Для наших целей несущественно, являются ли эти аксиомы необходимыми; нас касается только то, что они достаточны.
В отношении этих аксиом требуются некоторые замечания. Ясно, что аксиомы 2, 3 и 4 выражают частично соглашения, которые легко можно изменить. Если, когда они приняты, значение какой-то данной вероятности есть x, то мы можем с одинаковым успехом принять в качестве ее значения любое число f(x), которое возрастает по мере возрастания x, вместо 1 и 0 в аксиомах 3 и 4 мы должны будем подставить f(1) и f(0).
Согласно
Важно иметь в виду, что наше основное понятие p/h является отношением двух предложений (или конъюнкцией предложений), а не свойством одного предложения p. Это отличает вероятность, каковой она является в математическом исчислении, от вероятности, которой руководствуются в практике, так как последняя должна относиться к предложению, взятому само по себе или по крайней мере в отношении данных, которые не произвольны, а определяются проблемой и природой нашего познания. В исчислении, наоборот, выбор данных х совершенно произволен.
Аксиома V есть «конъюнктивная» аксиома. Она имеет дело с вероятностью того, что каждое из двух событий произойдет. Например, если я буду тянуть из колоды две карты, то каков шанс, что обе окажутся красными? Здесь «h» представляет собой данное, что колода состоит из 26 красных и 26 черных карт; 'p» обозначает, что «первая карта красная», а «q»- что «вторая карта красная». Тогда (p и q)/h» есть шанс, что обе карты будут красные, «p/h «есть шанс, что первая — красная, «q / (p и h)» есть шанс, что вторая красная, при условии, что первая — красная. Ясно, что p/h =1/2, q (p и h) =25/51. Очевидно, согласно аксиоме, шанс, что обе карты будут красные, равен 1/2х25/51.
Аксиома VI есть «дизъюнктивная» аксиома. В вышеприведенном примере она дает шанс, что по крайней мере одна из карт будет красная. Она говорит, что шанс, что по крайней мере одна будет красная, есть шанс, что первая красная, плюс шанс, что вторая — красная (когда не дано, будет ли первая красной или не будет), минус шанс, что обе — красные. Это равняется 1/2+1/2-1/2х25/51, если использовать результат, полученный выше с помощью конъюнктивной аксиомы.
Ясно, что с помощью аксиом V и VI, при том условии, что даны отдельные вероятности любой ограниченной совокупности событий, мы можем исчислить вероятность наступления их всех или по крайней мере вероятность наступления одного из них.
Из конъюнктивной аксиомы следует, что
Это называется «принципом обратной вероятности». Ее полезность может быть иллюстрирована следующим образом. Пусть p будет какой-либо общей теорией, а q — экспериментальным данным, относящимся к p. Тогда p/h есть вероятность теории p в отношении ранее известных данных, q /h — вероятность q в отношении ранее известных данных и q (p и h) — вероятность q, если p истинно. Таким образом, вероятность теории p после того, как q установлено, получается посредством умножения прежней вероятности p на вероятность q при данном p и деления на прежнюю вероятность q. В самом благоприятном случае теория p будет предполагать q, так что q/ (p и h) =1. В этом случае это значит, что новое данное q повышает вероятность p пропорционально предшествующей невероятности q. Другими словами, если наша теория предполагает нечто весьма неожиданное, а это неожиданное затем происходит, то это сильно повышает вероятность нашей теории.
Этот принцип может быть иллюстрирован открытием Нептуна, рассматриваемым как подтверждение закона тяготения. Здесь p — закон тяготения, h — все относящиеся к делу факты, известные до открытия Нептуна, q — факт обнаружения Нептуна в определенном месте. Тогда q /h было предварительной вероятностью, что до сего времени неизвестная планета будет найдена в определенной небольшой области неба. Пусть она была равна m/n. Тогда после открытия Нептуна вероятность закона тяготения стала в n/m раз большей, чем раньше.