Чтение онлайн

на главную

Жанры

Человек редактированный, или Биомедицина будущего
Шрифт:

Получается, что возможны ситуации, когда добавление еще одного здорового аллеля в клетку не приведет к излечению. А что приведет? Тут мы и приходим к пониманию, что умения работать с генетическим текстом целыми страницами или параграфами явно недостаточно. В данном случае в тех клетках, где нам нужна рабочая, функционирующая копия конкретного гена, необходимо исправить очень точно, побуквенно, генетическую мутацию, то есть именно тот нарушенный фрагмент генетического текста, который имеется в мамином аллеле. И только в этом случае мы сумеем устранить заболевание.

Но как это сделать? Как можно внутри клетки, среди трех миллиардов букв генетического текста правильно найти несколько нужных букв (обычно две-три), да еще их исправить? Воистину это задача, по сложности достойная человека, и она волновала ученых уже давно. Ведь речь идет о том, чтобы исправлять

буквы генетического текста не в пробирке, как это делалось на заре генной инженерии, а в живой клетке! Даже в генной терапии, то есть на следующем, более высоком уровне, ученые пытаются работать с генами в клетке, но, увы, не могут найти одиночные буквы, а вклеивают в генетическую книгу целые листы, прочтение которых приведет к нормализации работы организма.

Новая задача генетики теперь выглядит так: суметь в каждой из 1014 клеток организма найти и обезвредить одну из 3 х 109 букв.

Геномное редактирование

Исправляем букву за буквой

Итак, в начале 1990-х годов перед специалистами в области генетики и биохимии со всей остротой встала задача побуквенного редактирования генетического текста. Обычные помощники редактора — цветная ручка и программа Word — здесь бесполезны, ведь генетический текст представляет собой цепочку повторяющихся химических молекул — нуклеотидов, которые служат буквами этого текста. Требовалось создание принципиально новых инструментов, позволяющих работать с генетическим текстом с очень большой точностью, на уровне отдельных букв, то есть нуклеотидов, — что-то вырезать, что-то вставлять, и при этом очень точно и в живой клетке. Неправильная замена всего лишь одного нуклеотида может привести к остановке работы гена и гибели клетки.

Первые такие инструменты и появились в 1990-х годах (помните, в главе 2 мы начали рассказ о Джошуа Ледерберге и генетической рекомбинации). Для того, чтобы заменить букву или несколько букв генетического текста нам надо провести рекомбинацию, — только так в клетке может произойти замена. А для того, чтобы она произошла именно в нужном нам месте, необходимо внести разрыв в цепь ДНК. Для этого использовались особые ферменты — нуклеазы. Кроме того, какой-то механизм должен их направить в нужное место и точно распознать именно ту последовательность нуклеотидов (назовем ее «генетическим словом»), в которой нам нужен разрыв.

Для этого стали использовать так называемые мегануклеазы. Это крупные белковые молекулы, которые, кроме нуклеазной активности, характеризуются протяженным «генетическим словом», или, как говорят ученые, сайтом, который они распознают. Обычно это «слово» состоит из пятнадцати-сорока нуклеотидов. Такие длинные слова уникальны для геномов. Например, одна из первых мегануклеаз, I-Ssel, распознает определенную последовательность из восемнадцати нуклеотидов, и такое их сочетание случается настолько редко, что может встретиться в генетическом тексте, только если он в двадцать с лишним раз больше генома человека. Недостатками мегануклеаз являлись незначительное количество распознаваемых «генетических слов» и их размер (мега!), то есть протяженность сайта распознавания. Все это осложняло проведение экспериментальных работ с ними.

Первый значимый прорыв в направленном распознавании генетического текста внутри клетки произошел в начале XXJ века. Тогда придумали искусственные распознающие нуклеазы, которые получили название нуклеазы типа цинковых пальцев (zinc-finger nucleases). Наиболее интересен данный тип нуклеаз с точки зрения творческого, дизайнерского подхода человека к использованию фундаментальных знаний, поэтому далее мы уделим им немного больше внимания, а заодно узнаем об очень важных генах.

Транскрипционные факторы

Мы уже говорили в главе 1, что в изученную часть ДНК человека, помимо самих генов, кодирующих белки, входят регуляторные последовательности — фрагменты ДНК, ответственные за работу гена. С химической точки зрения это такие же участки ДНК, как и гены, поскольку тоже составлены из четырех чередующихся в определенной последовательности нуклеотидов А, Т, Г и Ц. Как же эти участки ДНК могут регулировать работу гена?

Информация обо всех процессах в клетке записана в последовательности ДНК. Чтобы считать информацию с флешки, ее надо вставить в компьютер. Другим видом накопителя информации является стример. Он записывает информацию на магнитную ленту и используется в больших дата-центрах. Именно стримерам принадлежит рекорд по плотности записи информации на единицу площади. А принципиальное устройство стримера очень простое. Может, кто-то помнит или видел катушечный магнитофон: там две катушки, с одной лента сматывается, на другую наматывается, а посередине магнитная головка, которая касается ленты и считывает информацию, превращая ее в звук. Информация с ДНК — «магнитной ленты» — считывается такой же биологической «головкой». Этот «звукосниматель», который «озвучивает» ген, то есть делает его простую копию для преобразования в белок, называется транскрипционным комплексом, а процесс «озвучки» — транскрипцией. Транскрипционный комплекс собирается из нескольких белковых молекул, очень важно, чтобы он собрался в правильном месте, то есть выбрал правильный генетический текст для озвучки. За это отвечают так называемые транскрипционные факторы — белковые молекулы, которые узнают определенные комбинации «слов» (последовательностей нуклеотидов), носящих название промоторы.

И транскрипционные факторы, и промоторы эволюционно изменились очень мало, о чем свидетельствует их поразительное сходство у совершенно различных биологических видов, от плодовой мушки дрозофилы до человека. Это доказывает, что транскрипционные факторы были очень значимы в эволюции живых существ и, как мы теперь понимаем, играют огромную роль в функционировании наших генов.

Дело в том, что работа генов в организме подчинена тем же самым законам, что и устройство любого социума. Это значит, что в нем есть «господа» — такие, как транскрипционные факторы, а есть гены-«работники», которые подчиняются транскрипционным факторам. Один такой фактор может контролировать работу сотни генов, поэтому всего полторы тысячи транскрипционных факторов контролируют работу двадцати пяти тысяч генов.

Транскрипционный комплекс из транскрипционных факторов и различных кофакторов [8] как раз и задает все особенности транскрипции гена в определенной клетке и в определенное время. Изучать работу определенного гена в определенных условиях — это большая наука, но пока оставим эту тему в стороне.

Нас в данный момент интересует, что транскрипционные факторы очень хорошо умеют распознавать генетический текст, но все по-разному. Одни распознают текст очень специфично, и тогда не требуется слишком большой сборки из транскрипционных факторов и кофакторов, а другие — менее специфично, и тогда для повышения точности транскрипции генов могут понадобиться еще какие-то белки-помощники и еще один кофактор, которые осуществили бы «тонкую настройку».

8

Кофактор — небелковое соединение, чаще всего ион металла, которое присоединяется к функциональному участку белка и способствует его биологической деятельности. — Прим. ред.

Понятие транскрипционного фактора появилось в конце 1980-х годов, а чуть позже исследователи обнаружили целое семейство транскрипционных факторов, белковая структура которых имела повторяющиеся элементы, и эти элементы получили название цинковые пальцы.

Нуклеазы типа цинковых пальцев

Свое странное название эти фрагменты белковых молекул получили за характерную трехмерную структуру и наличие в их составе ионов цинка. Цинковый палец представляет собой последовательность аминокислот, состоящую из пары близко расположенных цистеинов (аминокислотных остатков), потом следует промежуток в полтора-два десятка любых аминокислот, и опять идут два близко расположенных цистеина или гистидина. Ионы цинка стабилизируют, удерживают эту конструкцию, связываясь координационными связями с двумя близко расположенными цистеинами. Представьте себе веревку с четырьмя завязанными узелками — это будут цистеины или гистидины. А теперь пальцами притяните все узелки в одну точку. Ваши пальцы сыграли роль иона цинка. У вас получатся три петли, которые можно назвать тремя пальцами. Так вот, каждый палец достаточно точно узнает три-четыре нуклеотида ДНК, расположенные в определенном порядке, и связывается с ними. Три пальца уже распознают девять-десять нуклеотидов — определенное слово генетического текста.

Поделиться:
Популярные книги

Мне нужна жена

Юнина Наталья
Любовные романы:
современные любовные романы
6.88
рейтинг книги
Мне нужна жена

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Совок 11

Агарев Вадим
11. Совок
Фантастика:
попаданцы
7.50
рейтинг книги
Совок 11

Дайте поспать! Том III

Матисов Павел
3. Вечный Сон
Фантастика:
фэнтези
5.00
рейтинг книги
Дайте поспать! Том III

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Магнатъ

Кулаков Алексей Иванович
4. Александр Агренев
Приключения:
исторические приключения
8.83
рейтинг книги
Магнатъ

Хочу тебя навсегда

Джокер Ольга
2. Люби меня
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Хочу тебя навсегда

Темный Патриарх Светлого Рода 6

Лисицин Евгений
6. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 6

Бальмануг. (не) Баронесса

Лашина Полина
1. Мир Десяти
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Бальмануг. (не) Баронесса

Жандарм 2

Семин Никита
2. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 2

Измена. Осколки чувств

Верди Алиса
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Осколки чувств

Измена. Свадьба дракона

Белова Екатерина
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Измена. Свадьба дракона

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)