Чтение онлайн

на главную - закладки

Жанры

Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:

Бекенштейн, конечно, был уверен в правоте Хокинга и очень радовался его выводам. К концу 1975 г. Зельдович, Старобинский, я и другие коллеги Хокинга склонны были согласиться с ним. Однако это согласие было не полным, пока мы не осознали всю глубину случайности, таящейся в черной дыре. Для описания «внутренностей» черной дыры существуют различные способы и при этом без изменений ее внешнего вида (массы, углового момента и заряда). Но что собой представляют эти «внутренности»? И как с физической точки зрения можно понять тепловое поведение черной дыры — тот факт, что дыра ведет себя совершенно так же, как обычное тело, имеющее некую температуру? И когда Хокинг начал заниматься исследованиями квантовой гравитации и происхождения Вселенной, Поль Дэвис, Билл Унру, Роберт Уолд, Джеймс Йорк, я и многие другие коллеги Хокинга нацелились на решение этих вопросов. В течение следующих десяти лет мы постепенно пришли к новому пониманию, которое показано на рис. 12.3.

12.3. (а)

Наблюдатели, падающие в черную дыру (два маленьких человечка в скафандрах), видят, что вакуумные флуктуации вблизи горизонта событий черной дыры состоят из пар виртуальных частиц, (б) С точки зрения наблюдателей над горизонтом событий, находящихся в покое по отношению к нему (маленький человечек, висящий на веревке, и второй, которого поддерживает реактивный двигатель), вакуумные флуктуации состоят из горячей атмосферы реальных частиц; это «ускоренная» точка зрения, (в) Кажется, что частицы этой атмосферы, с «ускоренной» точки зрения, излучаются горячим, похожим на мембрану горизонтом. Они отлетают на короткие расстояния и большинство из них притягивается назад к горизонту событий. Однако некоторое количество частиц ухитряются ускользнуть от притяжения черной дыры и испариться во внешнее пространство

Рис. 12.3а изображает флуктуации атома у черной дыры так, как их видят наблюдатели, падающие внутрь через горизонт событий. Эти флуктуации состоят из пар виртуальных частиц. Время от времени благодаря приливным силам гравитации одна из таких пар частиц получает энергию, достаточную для превращения виртуальных частиц в реальные и для того, чтобы одна из этих частиц ускользнула от черной дыры. Эта точка зрения на вакуумные флуктуации и на испарение черных дыр рассматривалась на рис. 12.2.

Рис. 12.3б, изображает другую точку зрения на вакуумные флуктуации черной дыры, со стороны наблюдателей, которые всегда находятся в покое над горизонтом событий. Для того чтобы их не поглотила черная дыра, эти наблюдатели должны иметь достаточно большое ускорение по отношению к падающим наблюдателям, используя ракетные двигатели или просто повиснув на веревке. По этой причине точка зрения этих наблюдателей называется «ускоренной». Это также точка зрения «мембранного подхода» (глава 11).

Удивительно то, что с «ускоренной» точки зрения флуктуации вакуума состоят не из виртуальных частиц, всплывающих из небытия и уходящих в него же, но из реальных частиц, которые имеют положительную энергию и долгую жизнь (см. Врезку 12.5). Реальные частицы образуют горячую атмосферу вокруг черной дыры, очень похожую на атмосферу Солнца. С этими реальными частицами связаны реальные волны. На частицу в атмосфере, движущуюся вверх, действуют гравитационные силы и уменьшают энергию ее движения; соответственно, удаляющаяся волна подвергается гравитационному покраснению, и ее длина волны увеличивается (рис. 12.3б).

На рис. 12.3в изображено движение частиц в атмосфере черной дыры с «ускоренной» точки зрения. Кажется, что частицы излучаются горизонтом событий; большинство из них поднимаются на короткое расстояние над горизонтом событий и затем падают обратно под влиянием сильного притяжения черной дыры, но некоторым удается «ускользнуть из объятий» черной дыры. Эти ускользающие частицы и видят падающие наблюдатели как те, что появляются из виртуальных пар (рис. 12.3а). Это испаряющиеся частицы Хокинга.

С «ускоренной» точки зрения, горизонт ведет себя как мембраноподобная поверхность с высокой температурой; описание «мембранной парадигмы» см. в главе 11. Подобно тому как горячая поверхность Солнца излучает частицы (в частности, фотоны, которые освещают нашу Землю), их излучает и горячая мембрана горизонта событий черной дыры. Излучаемые мембраной частицы формируют атмосферу черной дыры, а некоторые из них испаряются. Гравитационное красное смещение уменьшает энергию частиц по мере их удаления от мембраны. Поэтому хотя сама мембрана чрезвычайно горячая, испаряющееся излучение гораздо холоднее.

Врезка 12.5

Излучение ускорения

В 1975 г. недавний студент Уилера, Уильям Унру, и независимо от него Пол Дэвис из Королевского колледжа в Лондоне сделали следующее открытие (используя законы квантовых полей в искривленном пространстве-времени): наблюдатели, движущиеся с ускорением возле горизонта событий черной дыры, будут видеть флуктуации вакуума не в виде виртуальных пар частиц, а в виде атмосферы реальных частиц, атмосферы, которую Унру назвал “излучением ускорения”.

Это удивительное открытие показало, что понятие реальной частицы является относительным, а не абсолютным; т. е. оно зависит от системы координат. Наблюдатели в свободно падающих

системах отсчета, которые ныряют под горизонт событий черной дыры, не видят вне горизонта реальных частиц; они видят только виртуальные частицы. Наблюдатели в ускоренных системах отсчета, которые благодаря своему ускорению всегда остаются выше горизонта событий, видят множество реальных частиц.

Как это возможно? Как может один наблюдатель утверждать, что горизонт событий окружен атмосферой из реальных частиц, а другой — что ее нет? Ответ заключается в том, что флуктуационные волны в вакууме из виртуальных частиц не ограничены областью вне горизонта событий; частично флуктуационная волна находится под горизонтом, а частично вне его.

• Свободно падающие наблюдатели, проходящие через горизонт, могут увидеть обе части волны вакуумных флуктуаций, как ту часть, которая находится над горизонтом, так и над ним, поэтому такие наблюдатели хорошо осведомлены (проводя измерения), что такие волны являются просто вакуумными флуктуациями и, соответственно, что ее части являются не реальными, а виртуальными частицами.

• Ускоренные наблюдатели, которые все время находятся над горизонтом, могут видеть только внешнюю часть вакуумной флуктуационной волны и не могут видеть ее внутреннюю часть и, соответственно, с помощью своих измерений не могут узнать, что такая волна является только флуктуационной с виртуальными частицами. Видя только часть флуктуационной волны, они принимают ее за «реальную» — реальную волну и реальные частицы и в результате своих измерений обнаруживают вокруг горизонта атмосферу из реальных частиц.

То что реальные частицы атмосферы ускоренного наблюдателя постоянно испаряются и улетают во внешнюю Вселенную (рис. 12.3в), является отражением того факта, что эта точка зрения так же верна, как и точка зрения свободно падающего наблюдателя. То, что свободно падающий наблюдатель видит как превращение виртуальной пары в реальную с помощью приливных сил с последующим испарением одной из реальных частиц, ускоренный наблюдатель видит просто испарение одной из частиц, которая всегда была реальной и всегда находилась в атмосфере черной дыры. Обе точки зрения правильны, они отражают одну и ту же физическую реальность, рассматриваемую в разных системах отсчета.

С «ускоренной» точки зрения становится понятно не только то, почему черная дыра такая горячая, но и то, почему черные дыры так трудно обнаружить. Рассмотрим следующий мысленный эксперимент, предложенный мной и моим постдоком Войчехом Зуреком.

Бросим в атмосферу черной дыры небольшое количество вещества. Это вещество обладает некоторой энергией (и эквивалентной ей массой), угловым моментом вращения и электрическим зарядом. Из атмосферы это вещество попадет, пролетев через горизонт событий, внутрь черной дыры. Как только вещество попадет внутрь дыры, оно становится недоступным для наблюдения извне. Природу такого вещества исследовать невозможно; нельзя сказать, состоит ли оно из материи или антиматерии, из фотонов или тяжелых атомов, из электронов или позитронов. Невозможно также выяснить, где именно попало вещество в дыру. Поскольку у черной дыры нет «волос», единственное, что можно узнать, исследуя ее извне, это массу частицы, угловой момент и заряд, с которыми она вошла в атмосферу.

Спросим себя, сколько существует различных способов введения в горячую атмосферу дыры этого вещества с определенным количеством массы, углового момента и заряда. Подобный вопрос мы уже задавали в главе 12, когда рассматривали распределение детских игрушек по плиткам детской комнаты (см. Врезку 12.3). Логарифм числа способов «внедрения» частицы должен быть равен увеличению энтропии в атмосфере, в соответствии со стандартными законами термодинамики. В результате достаточно простого расчета мы с Зуреком показали, что увеличение энтропии в точности равно % прироста площади поверхности горизонта событий, деленного на постоянную Планка-Уилера; это фактически и есть сам прирост площади поверхности горизонта событий, о чем говорил Хокинг еще в 1974 г. на основании математического подобия законов механики черных дыр и законов термодинамики.

В краткой форме вывод из этого мысленного эксперимента следующий: энтропия черной дыры равна числу способов ее возникновения. Это означает, что сформировать черную дыру с массой 10 масс Солнца и энтропией 4,6х1078 можно 104,6х(10)78 способами. Такая концепция энтропии была впервые предложена Бекенштейном в 1972 г., а в 1977 г. Хокингом и его бывшим студентом Гэри Гиббонсом дано ее весьма абстрактное доказательство.

Этот мысленный эксперимент показывает второй закон термодинамики в действии. Энергия, угловой момент и заряд, которые попали в атмосферу черной дыры, могут принимать любую форму. Это может быть воздух из комнаты (пример с которым мы рассматривали ранее в этой главе), упакованный в пакет и заброшенный туда. Если пакет забросить в атмосферу черной дыры, энтропия внешней Вселенной уменьшится на величину энтропии в пакете. Однако энтропия атмосферы черной дыры, а поэтому и самой дыры, увеличится больше, чем на величину энтропии в пакете, так что полная энтропия черной дыры и внешней Вселенной не убывает. Второй закон термодинамики будет соблюден.

Поделиться:
Популярные книги

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

Мне нужна жена

Юнина Наталья
Любовные романы:
современные любовные романы
6.88
рейтинг книги
Мне нужна жена

Магнатъ

Кулаков Алексей Иванович
4. Александр Агренев
Приключения:
исторические приключения
8.83
рейтинг книги
Магнатъ

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Системный Нуб

Тактарин Ринат
1. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб

Не верь мне

Рам Янка
7. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Не верь мне

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

LIVE-RPG. Эволюция 2

Кронос Александр
2. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.29
рейтинг книги
LIVE-RPG. Эволюция 2

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Мама из другого мира. Делу - время, забавам - час

Рыжая Ехидна
2. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.83
рейтинг книги
Мама из другого мира. Делу - время, забавам - час

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница