Чтение онлайн

на главную

Жанры

Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:

На первый взгляд, это не отвергало идею о том, что внутри Солнца может находиться нейтронная сердцевина — ядро в 1/10 солнечной массы, которое допускалось оценками Оппенгеймера и Сербера, было достаточно легким, чтобы спрятаться внутри Солнца, не меняя существенно его поверхностные свойства (не изменяя то, что мы видим). Однако дальнейшие вычисления, учитывающие баланс между притяжением гравитации ядра и давлением окружающего газа, показали что эффекты, порождаемые такой сердцевиной, не спрятать. Вокруг нее должна располагаться оболочка из вещества, подобного веществу белого карлика массой примерно в одну солнечную, а вокруг такой оболочки лишь малая часть нормального газа; в результате Солнце не могло бы выглядеть таким, каким мы его в действительности наблюдаем. Поэтому Солнце не может содержать внутри нейтронное ядро, и энергия, поддерживающая его жар, должна поступать откуда-то еще.

Откуда? Тогда же, когда Оппенгеймер и Сербер проводили свои вычисления в Беркли, Ганс Бете в Корнельском университете в Итаке (штат Нью-Йорк) и Чарльз Критчфилд в университете Джорджа Вашингтона в Вашингтоне (округ

Колумбия), используя разработанные незадолго до того законы ядерной физики, аккуратно показали, что ядерное горение (термоядерный синтез) может поддерживать горение Солнца и других звезд. Эддингтон был прав, а Ландау — нет (по крайней мере, в отношении Солнца и многих других звезд). (Однако с позиций начала 1990-х годов кажется, что для некоторой части гигантских звезд механизм Ландау действительно может работать.)

Оппенгеймер и Сербер, конечно, не подозревали, что работа Ландау была отчаянной попыткой избежать тюрьмы, а возможно, и смерти. Потому 1 сентября 1938 г., когда Ландау томился в Бутырской тюрьме, они отправили критическую статью в журнал Physical Review. Поскольку Ландау был достаточно крупным ученым, они воздержались от резких выпадов и писали достаточно дружелюбно: «Оценки Ландау приводят к величине в 0,001 солнечной массы для предельной [минимальной] массы [нейтронного ядра]. Эта оценка оказывается неверной… [Ядерные силы] которые, как часто полагают, имеют тип спинового обмена, предотвращают существование [нейтронных] ядер для звезд с массами, сравнимыми с массой Солнца».

* * *

Нейтронные ядра Ландау и нейтронные звезды Цвикки — в действительности одно и то же. Нейтронное ядро — это не что иное, как нейтронная звезда, каким-то образом оказавшаяся внутри обычной звезды. Это стало ясно Оппенгеймеру, и теперь, начав думать о нейтронных звездах, он неуклонно стал подступать к проблеме, за решение которой должен был (но не смог) приняться Цвикки. Какова же дальнейшая судьба массивных звезд, когда они истощают ядерное горючее, которое, согласно Бете и Критчфилду, поддерживает их горячими? Какие останки при этом создаются: белые карлики? нейтронные звезды? Черные дыры? Что-то иное?

Вычисления Чандрасекара неопровержимо показали, что звезды, меньшие, чем 1,4 солнечной массы, должны стать белыми карликами. Цвикки утверждал, что, по крайней мере, некоторые более массивные звезды взрываются, формируя нейтронную звезду, порождая в этом процессе сверхновую. Был ли Цвикки прав? И все ли массивные звезды умирают таким образом, избавляя в результате Вселенную от черных дыр?

Одной из сильных сторон Оппенгеймера как теоретика была способность, рассматривая трудную проблему, безошибочно отсекать усложнения, выделяя только центральное, определяющее все звено. Несколько лет спустя, этот талант сможет найти блестящее воплощение, когда Оппенгеймер станет руководителем американского проекта создания атомной бомбы. Теперь же, в борьбе за понимание характера смерти звезд, этот талант подсказал ему отбросить все нагроможденные Цвикки сложности — детали взрыва сверхновых, трансформацию обычного вещества в нейтронное вещество, высвобождение огромной энергии и, возможно, источник энергии сверхновых и космических лучей. Все это было неважно для ответа на вопрос о финальной судьбе звезды. Единственное, что было важно, — определить, какую максимальную массу может иметь нейтронная звезда. Если эта масса может быть любой (кривая В на рис. 5.3), то черные дыры не образуются никогда. Если же существует максимально возможная масса нейтронной звезды (кривая А на рис. 5.3), то звезда, имеющая массу, большую максимальной, умирая, могла бы образовать черную дыру.

Поставив с предельной ясностью вопрос о максимальной массе нейтронной звезды, Оппенгеймер методично и четко приступил к его решению. Как у него уже вошло в практику, он работал в сотрудничестве с учеником, в данном случае — с молодым человеком по имени Георгий Волков. История поисков Оппенгеймера и Волкова ответов на вопросы о массе нейтронных звезд, а также той определяющей роли, которую сыграл в этих исследованиях друг Оппенгеймера в Калтехе Ричард Толман, рассказана во Врезке 5.4. Эта история иллюстрирует подход к исследованиям Оппенгеймера, а также показывает несколько стратегий, по которым могут действовать физики, когда ясно понимают некоторые, но не все физические законы, управляющие явлением. В данном случае Оппенгеймер хорошо понимал законы квантовой механики и общей теории относительности, но ни он, ни кто-либо другой тогда еще хорошо не понимал ядерных сил.

Несмотря на слабое знание ядерных сил, Оппенгеймер и Волков смогли определенно показать (рис. 5.4), что существует максимальная масса нейтронных звезд и она лежит в пределах между половиной и несколькими солнечными массами.

В 1990-х годах, после 50 лет дополнительного изучения, мы знаем, что Волков и Оппенгеймер были правы; нейтронные звезды действительно имеют предел массы, и он лежит между 1,5 и 3 солнечными массами, тот же интервал, что и в оценках Волкова и Оппенгеймера. Более того, с 1967 г. астрономы обнаружили сотни нейтронных звезд, массы некоторых из них были измерены с большой точностью. Все измеренные массы близки к 1,4 солнечной, и мы не знаем почему.

Врезка 5.4

Рассказ об Оппенгеймере, Волкове и Толмане: поиск масс нейтронных звезд

Приступая к сложному

анализу, полезно получить некоторую опору, начиная с грубой оценки «порядка величины», вычисления, точного в пределах некоторого коэффициента, скажем, 10. В соответствии с этим эмпирическим правилом Оппенгеймер и начал атаку на задачу о том, могут ли нейтронные звезды иметь максимальную массу, с помощью грубого, всего на несколько страниц, вычисления. Результат заинтриговал: он нашел максимальную массу, равную 6 солнечным для любой нейтронной звезды. Если бы детальное вычисление дало тот же самый результат, то Оппенгеймер смог бы заключить, что звезды, более тяжелые, чем 6 Солнц, умирают с образованием черных дыр.

«Детальное вычисление» означало выбор массы гипотетической нейтронной звезды и поиск ответа на вопрос: может ли для такой массы нейтронное давление в звезде уравновесить гравитацию. Если баланс может быть достигнут, то выбранная масса нейтронной звезды возможна. Требовалось перебрать одну массу за другой и для каждой получить ответ о балансе между давлением и гравитацией. Это сделать гораздо сложнее, чем кажется с первого взгляда, поскольку давление и гравитация должны уравновесить друг друга везде внутри звезды.

Однако подобные вычисления предпринял однажды Чандрасекар, когда анализировал белые карлики (расчет, выполненный с использованием калькулятора «Брауншвайгер», принадлежащего Артуру Эддингтону, с Эддингтоном, заглядывающим через плечо, — глава 4).

Оппенгеймер мог следовать в своих вычислениях нейтронных звезд методу расчета белых карликов Чандрасекара только, сделав два принципиальных изменения. Во-первых, в белом карлике давление производится электронами, а в нейтронной звезде нейтронами, таким образом, уравнение состояния (соотношение между давлением и плотностью) будет другим. Во-вторых, в белом карлике гравитация достаточно слаба и поэтому может быть описана достаточно хорошо как законами Ньютона, так и общей теорией относительности Эйнштейна: эти два описания дают почти одинаковые предсказания, поэтому Чандрасекар выбрал более простое ньютоновское описание. В нейтронной же звезде, с ее намного меньшей окружностью, гравитация настолько сильна, что использование законов Ньютона могло бы вызвать серьезные ошибки, таким образом, Оппенгеймер должен будет описывать гравитацию согласно законам общей теории относительности Эйнштейна7. Кроме этих двух изменений — новое уравнение состояния (нейтронное давление вместо электронного) и новое описание гравитации (эйнштейновское вместо ньютоновского) — вычисление Оппенгеймера было примерно таким же, как у Чандрасекара.

На этой стадии Оппенгеймер был готов поручить детальные вычисления студенту. Он выбрал Георгия Волкова, молодого человека из Ванкувера, эмигрировавшего из России в 1924 г.

Оппенгеймер объяснил Волкову задачу и сказал ему, что математическое описание гравитации, которое может понадобиться, можно найти в учебнике Ричарда Толмана «Относительность, термодинамика и космология». Уравнение состояния для нейтронного давления, однако, было более трудной проблемой, так как это давление вызывается ядерными силами (которыми нейтроны привлекают и отталкивают друг друга). Хотя ядерные силы начали уже хорошо понимать для плотностей атомных ядер, для плотностей в десять раз больших, с которыми нейтроны должны быть упакованы внутри массивной нейтронной звезды, такого понимания не было. Физики даже не знали, была ли ядерная сила при этих плотностях притягивающей или отталкивающей (привлекают или отталкивают друг друга нейтроны) и, таким образом, не было никакого способа узнать, уменьшает ли ядерная сила давление нейтронов или, напротив, увеличивает его. Но у Оппенгеймера был способ обойти эту неизвестность. [72]

72

См. обсуждение в последнем разделе главы 1 («Характер физических законов») соотношения между различными описаниями законов физики и их областей применимости.

Предположите сначала, что ядерная сила не существует, — предложил Волкову Оппенгеймер. Тогда давление будет известно — это будет хорошо понятное нейтронное давление вырождения (давление производимое «клаустрофобным» движением нейтронов). Уравновесьте это нейтронное давление вырождения гравитацией, и из этого баланса вычислите структуры и массы, которые нейтронные звезды имели бы во Вселенной без ядерной силы. После этого попробуйте оценить, как изменится структура и масса звезд, если в нашей реальной Вселенной ядерная сила ведет себя тем или иным образом.

С такими четкими инструкциями трудно было промахнуться. Волкову, направляемому ежедневными консультациями с Оппенгеймером, с помощью книги Толмана потребовалось только несколько дней, чтобы получить общерелятивистское описание гравитации в нейтронной звезде. И понадобилось еще всего несколько дней, чтобы превратить известное уравнение состояния для вырожденного электронного давления в уравнение для давления нейтронов. Уравновесив давление гравитацией, Волков получил сложное дифференциальное уравнение, решение которого должно было рассказать ему о внутренней структуре нейтронных звезд. И тут он уперся в тупик. Как не пытался, Волков не мог решить это дифференциальное уравнение аналитически, чтобы получить формулу для структуры звезд, и как Чандрасекар для белых карликов, он был вынужден был решать его уравнение численно. Так же, как Чандрасекар потратил много дней в 1934 г., нажимая на клавиши калькулятора Эддингтона «Брауншвайгер», вычисляя аналогичную структуру белых карликов, Волков трудился большую часть ноября и декабря 1938 г., нажимая на клавиши калькулятора «Маршан».

Поделиться:
Популярные книги

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2

Бремя империи

Афанасьев Александр
Бремя империи - 1.
Фантастика:
альтернативная история
9.34
рейтинг книги
Бремя империи

Кодекс Охотника. Книга XIX

Винокуров Юрий
19. Кодекс Охотника
Фантастика:
фэнтези
5.00
рейтинг книги
Кодекс Охотника. Книга XIX

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

"Искажающие реальность" Компиляция. Книги 1-14

Атаманов Михаил Александрович
Искажающие реальность
Фантастика:
боевая фантастика
космическая фантастика
киберпанк
рпг
5.00
рейтинг книги
Искажающие реальность Компиляция. Книги 1-14

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Повелитель механического легиона. Том III

Лисицин Евгений
3. Повелитель механического легиона
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том III

Доктора вызывали? или Трудовые будни попаданки

Марей Соня
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Доктора вызывали? или Трудовые будни попаданки

Боги, пиво и дурак. Том 3

Горина Юлия Николаевна
3. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 3

Механический зверь. Маленький изобретатель

Розин Юрий
1. Легенда о Лазаре
Фантастика:
героическая фантастика
5.00
рейтинг книги
Механический зверь. Маленький изобретатель

Тринадцатый II

NikL
2. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый II

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4