Чтение онлайн

на главную - закладки

Жанры

? – Число Бога. Золотое сечение – формула мироздания
Шрифт:

Рис. 24

Давайте при помощи самой простой геометрии изучим определение Евклида и поймем, почему золотое сечение играет такую важную роль в построении пятиугольника. На рис. 24 изображен отрезок АВ, разделенный на две части точкой С. Евклидово определение из книги IV, где говорится о крайнем и среднем отношении, означает, в сущности, что (длинная часть) / (короткая часть) = (целый отрезок/длинная часть). Иначе говоря, на рис. 24:

AC/CB = AB/AC

Так как же подобное деление отрезка связано с пятиугольником? У любой правильной плоской фигуры (то есть с равными сторонами

и внутренними углами, такие фигуры еще называют правильными многоугольниками) сумма углов равна 180 x (n–2), где n – число сторон. Например, у треугольника n = 3, и сумма всех углов равна 180 градусам. У правильного пятиугольника n = 5, и сумма всех углов, следовательно, равна 540 градусов. Значит, каждый угол правильного пятиугольника равен 540/5 = 108 градусов. А теперь представим себе, что мы проводим из одного угла пятиугольника две диагонали, как на рис. 25, а, и у нас получается три равнобедренных треугольника. Поскольку два угла при основании любого равнобедренного треугольника равны, углы при основании треугольников по бокам равны 36 градусов каждый: (180–108)/2.

Рис. 25

Поэтому получается, что углы среднего треугольника равны 36–72–72, как помечено на рис. 25, а. Если разделить любой из 72-градусных углов при основании треугольника (как на рис. 25, b) биссектрисой, получится маленький треугольник DBC с такими же углами (36–72–72), как и большой треугольник ADB. При помощи самой элементарной геометрии мы можем показать, что по определению Евклида точка С делит сторону АВ в золотом сечении. Более того, отношение AD к DB также равно золотому сечению (краткое доказательство приводится в Приложении 4). Иначе говоря, отношение длины диагонали к длине стороны у правильного пятиугольника равно числу . Этот факт показывает, что умение разделить отрезок в золотом сечении дает нам еще и простой способ построить правильный пятиугольник. Необходимость построить правильный пятиугольник и была главной причиной интереса древных греков к золотому сечению. Треугольник, который на рис. 25, а находится в середине – с отношением стороны к основанию, равным – известен также как золотой треугольник, а два треугольника по сторонам от него, у которых отношение стороны к основанию равно 1/, называют иногда золотыми гномонами. Рис. 26 иллюстрирует уникальное свойство золотых треугольников и золотых гномонов: их можно рассекать на треугольники поменьше, которые также будут представлять собой золотые треугольники и золотые гномоны.

Связь золотого сечения с правильными пятиугольниками, пятисторонняя симметрия и платоновы тела представляют интерес сами по себе, и их, конечно, было бы более чем достаточно, чтобы возбудить любознательность древних греков. Пифагорейцы были прямо-таки очарованы правильным пятиугольником и пентаграммой, а Платон пристально интересовался правильными многогранниками и был убежден, что они служат отражением фундаментальных вселенских сущностей; поэтому поколения математиков, не покладая рук, трудились над формулировкой многочисленных теорем, имеющих отношение к . Однако золотое сечение никогда не заняло бы такого видного места и не снискало бы почтения на грани поклонения, если бы не некоторые его алгебраические свойства, поистине уникальные. Но чтобы понять, каковы эти свойства, нам нужно сначала точно вычислить значение .

Снова рассмотрим рис. 24; возьмем длину короткой части СВ за единицу, а длину длинной части АС за х единиц. Если отношение х к 1 таково же, как (х +1) – то есть длины отрезка АВ – к х, значит, отрезок разделен в крайнем и среднем отношении. Мы можем легко найти значение x в золотом сечении. По определению крайнего и среднего отношения

х/1 = (х + 1) / x.

Умножим обе части на х; тогда у нас получится х2 = х + 1, или простое

квадратное уравнение

х2 – х – 1 = 0.

Если вы вдруг подзабыли, как решать квадратные уравнения, в Приложении 5 приведена краткая памятка. Два корня уравнения золотого сечения равны

х1 = (1 + 5) /2

х2 = (1 – 5) /2.

Положительный корень х1 = (1 + 5)/2 = 1,6180339887… и дает нам значение золотого сечения. Теперь очевидно, что число – иррациональное, поскольку представляет собой половину суммы 1 + 5. Тут можно сразу заподозрить, что у этого числа есть интересные свойства; для этого нам понадобится простой карманный калькулятор. Введите число 1,6180339887 и нажмите клавишу [х2]. Ну как, ничего удивительного не замечаете? Теперь снова введите то же самое число и на сей раз нажмите клавишу [1/х]. Поразительно, правда? Квадрат числа 1,6180339887… дает 2,6180339887…, его обратное число («один к х») равно 0,6180339887… – знаки после запятой полностью совпадают! Золотое сечение обладает уникальными свойствами – чтобы получить его квадрат, достаточно прибавить к нему 1, а чтобы получить число, ему обратное, – вычесть 1. Кстати, отрицательный корень уравнения х2 = (1 – 5)/2 равен в точности –1/.

Пол С. Брукманс из города Конкорд в штате Калифорния в 1977 году опубликовал в журнале «Fibonacci Quarterly» забавный стишок под названием «Constantly Mean», что можно перевести и как «Постоянное Среднее» (здесь он называет золотое сечение золотым средним):

Закономерность этого числа терзает мир давно:Как дробь простая нам никак не представляется оно.Ах, это иррационально? Да! Быть может, и безумно? Нет!Уверенно даю ответ.Но числам иррациональным не четаТа странная загадка, пустячок и ерунда,Что «золотая середина» называют чинно.На вид она проста и вроде бы невинна.Однако – погляди, попробуй-ка переверни ее!Получишь ты ее же самоё,Уменьшенную ровно на один, —Такой забавный есть у мирозданья клин.А если фокус провернешь другой,Прибавив к ней же единицу,Она своим квадратом обратится.Вот так. Могу лишь покачать я головой.(Пер. М. Федоровой)

Итак, мы получили алгебраическое выражение золотого сечения и теперь можем, в принципе, вычислить его с высокой точностью. Именно это и проделал М. Берг в 1966 году, когда он за 20 минут на большом компьютере IBM 1401 вычислил число с точностью до 4599 знака после запятой (результат был опубликован в «Fibonacci Quarterly»). Сегодня можно проделать то же самое практически на любом персональном компьютере меньше чем за две секунды. Более того, в декабре 1996 года золотое сечение было вычислено до десятимиллионного знака после запятой, и ушло на это около получаса. Для подлинных любителей интересных чисел на следующем развороте приведено значение числа до 2000 знака после запятой (справа для удобства – указаны номера десятичных позиций).

Конечно, все вышеприведенные свойства числа весьма интересны, однако читатель вправе решить, что они едва ли оправдывают звание «золотого» или «божественного» числа – и будет, конечно, прав. Однако пока что мы лишь стоим на пороге поразительных чудес.

Значение числа до 2000 знака после запятой

Сокровищница сюрпризов

Поделиться:
Популярные книги

Темный Патриарх Светлого Рода

Лисицин Евгений
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

Меняя маски

Метельский Николай Александрович
1. Унесенный ветром
Фантастика:
боевая фантастика
попаданцы
9.22
рейтинг книги
Меняя маски

Ученик. Второй пояс

Игнатов Михаил Павлович
9. Путь
Фантастика:
фэнтези
боевая фантастика
5.67
рейтинг книги
Ученик. Второй пояс

Зеркало силы

Кас Маркус
3. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Зеркало силы

Повелитель механического легиона. Том V

Лисицин Евгений
5. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том V

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Мастер темных Арканов

Карелин Сергей Витальевич
1. Мастер темных арканов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Мастер темных Арканов

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Мимик нового Мира 3

Северный Лис
2. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 3

Идеальный мир для Социопата 3

Сапфир Олег
3. Социопат
Фантастика:
боевая фантастика
6.17
рейтинг книги
Идеальный мир для Социопата 3