Чтение онлайн

на главную - закладки

Жанры

? – Число Бога. Золотое сечение – формула мироздания
Шрифт:

Собственные астрономические изыскания Птолемей согласовал с выводами других греческих астрономов, в особенности Гиппарха Никейского, и свел весь корпус знаний воедино в своем энциклопедическом тринадцатитомном труде «Великое математическое построение по астрономии», или попросту «Великое» (по-гречески «мегисте»), которое в Европе стало известно под арабизированным названием «Альмагест» – «мегисте» с приставкой «аль-» – определенным артиклем. Кроме того, Птолемею принадлежат важные заслуги и в географической науке, он написал авторитетный труд «Руководство по географии».

В «Альмагесте» и «Руководстве по географии» Птолемей приводит один из самых ранних эквивалентов тригонометрической таблицы для множества углов. В частности, он вычислил длины хорд, соединяющих две точки на окружности под разными углами, в том числе под углами 36, 72 и 108 градусов: эти величины, если вы помните, появляются и в правильном пятиугольнике, а следовательно, тесно связаны с золотым сечением.

Последним великим греческим геометром, который занимался теоремами, связанными с золотым сечением, был Папп Александрийский. В своем «Математическом собрании» (ок. 340 г. н. э.) Папп предлагает новый метод построения додекаэдра и икосаэдра, а также сравнивает объемы платоновых тел, и во всех этих выкладках присутствует золотое сечение. Комментарии Паппа к евклидовой теории иррациональных чисел сохранились в арабских переводах трудов Паппа и прекрасно отражают историческое

развитие представлений об иррациональных числах. Однако эти героические усилия остановить общий упадок и разложение математики и, в частности, геометрии оказались безуспешны, и после смерти Паппа интерес к золотому сечению угас на долгие годы, что, впрочем, соответствовало общей тенденции: Запад утратил интерес к науке. Великая Александрийская библиотека была уничтожена в несколько этапов, сначала римлянами, а затем христианами и магометанами. Даже Платоновской Академии пришел конец – это случилось в 529 году, когда византийский император Юстиниан распорядился закрыть все греческие учебные заведения. Последовало мрачное Средневековье, и французский историк и епископ Григорий Турский (538–594) сокрушался, что «ученость среди нас погибла». В сущности, научно-исследовательская жизнь в Европе заглохла, и интеллектуальное первенство осталось за Индией и арабским миром. Знаменательным событием в этот период стало введение так называемых индо-арабских цифр и десятичной позиционной системы счисления. Виднейшим индийским математиком VI века был Ариабхата (476–ок. 550). Самая известная его книга называется «Ариабхатия», и там мы находим следующую фразу: «От разряда к разряду каждое в десять раз больше предыдущего», что свидетельствует о введении разрядов чисел, то есть записи, где важно положение цифры. Сохранилась индийская надпись, относящаяся к 595 году, где содержится запись даты индийскими цифрами в десятичной позиционной системе, а значит, к этому времени подобная запись уже была в ходу. Первым признаком того, что индийские цифры проникают на Запад (хотя тогда они еще не прижились), можно считать их упоминание в трудах Севера Себохта, жившего в Кенешре на реке Евфрат. В 662 году он писал: «Не стану обсуждать индийскую науку… и их ценные методы вычисления, которые превосходят всяческие описания. Скажу лишь, что они производят вычисления посредством девяти знаков».

По мере того, как набирал силу ислам, важным центром математических исследований становился магометанский мир. Если бы не интеллектуальный подъем в мусульманских странах в VIII веке, до нас не дошли бы труды большинства античных математиков. В частности, халиф аль-Мамун (786–853) учредил в Багдаде Бейт аль-хикма («Дом мудрости»), похожий на знаменитый александрийский университет – Музейон. В сущности, Аббасидский халифад по крупицам собирал остатки александрийской учености. Легенда гласит, что калифу во сне явился Аристотель, после чего он решил перевести все греческие ученые труды на арабский.

Важнейшие изыскания магометанских ученых в основном касались алгебры и если и затрагивали золотое сечение, то лишь весьма поверхностно. Тем не менее, следует упомянуть по меньшей мере троих математиков: это аль-Хорезми и Абу Камил Шуджа, жившие в IX веке, и Абу-л-Вафа, живший в Х веке.

Мухаммад ибн-Муса аль-Хорезми работал в Багдаде и примерно в 825 году написал здесь книгу, которая считается самым авторитетным трудом по алгебре той эпохи – «Книга восполнения и противопоставления», «Kitab aljabr wa almuqabalah». От ее названия – «аль-джебр» – пошло привычное для нас название науки «алгебра», поскольку это был первый учебник по этой дисциплине в Европе. Более того, слово «алгоритм», которым называется любой особый метод решения математической задачи при помощи набора определенных шагов-процедур, тоже происходит от искаженного «аль-Хорезми». «Книга восполнения» на несколько столетий стала синонимом теории уравнений. Уравнение, которое требовалось для решения одной задачи, представленной аль-Хорезми, очень похоже на уравнение-определение золотого сечения. Аль-Хорезми говорит: «Я поделил десять на две части; первую я умножил на десять, вторую – на саму себя, и результаты оказались одинаковыми». Неизвестную величину аль-Хорезми обозначил как «шай» – «вещь». Следовательно, первая часть условия вышеприведенной задачи сводится к фразе «умножаешь “вещь” на десять, получается десять “вещей”». Таким образом, первое уравнение выглядит так: 10 x x = (10 – x)2, то есть формула для вычисления меньшей части отрезка длиной в 10 единиц, разделенного в золотом сечении. Вопрос в том, имел ли аль-Хорезми в виду золотое сечение, когда формулировал эту задачу. Под влиянием аль-Хорезми неизвестную стали в ранних латинских работах называть «res», а в переводах на итальянский – «cosa» («вещь, дело»). Соответственно, алгебра прославилась как «larte della cosa» («искусство вещи», «искусство неизвестной»). Иногда ее называли также «ars magna» – «великое искусство» – в противоположность арифметике, которая считалась не таким великим искусством.

Другой арабский математик, внесший свой вклад в историю золотого сечения, – это Абу Камил Шуджа по прозвищу аль-Хасиб аль-Мисри, что значит «вычислитель из Египта». Родился он около 850 года, вероятно, в Египте, а умер около 930 года. Он написал много книг, некоторые из которых, в том числе «Книга об алгебре», «Книга о редкостях искусства арифметики» и «Книга о геометрии», дошли до нас. Возможно, Абу Камил был первым математиком, который не просто искал решения задачи, а интересовался поиском всех возможных решений. В своей книге «О редкостях искусства арифметики» он даже описывает задачу, к которой нашел 2678 решений! Однако с точки зрения истории золотого сечения главное – что книги Абу Камила стали основой для некоторых книг итальянского математика Леонардо Пизанского, известного под прозвищем Фибоначчи, с которым мы скоро познакомимся. Трактат Абу Камила «О пятиугольнике и десятиугольнике» содержит двадцать задач с решениями, где ученый вычисляет площади фигур, длины их сторон и радиусы описанных вокруг них окружностей. В некоторых этих вычислениях, но не везде, он применяет и золотое сечение. Несколько алгебраических задач из «Алгебры» Абу Камила, вероятно, тоже вдохновлены понятием золотого сечения.

Последний исламский математик, которого мне хочется здесь упомянуть, – Мухаммад Абу-л-Вафа (940–998). Абу-л-Вафа родился в Бузгане на территории современного Ирана и жил в правление династии Буидов в западном Иране и Ираке. Эта династия достигла расцвета в царствование Адуда аль-Давла, который был горячим поклонником и покровителем математики, естественных наук и искусств. Абу-л-Вафа был среди математиков, которых в 959 году пригласили в Багдад ко двору Адуда аль-Давла. В его первом солидном труде – книге «О том, что нужно знать писцам, дельцам и другим в науке арифметики», по словам самого ученого, «содержатся все арифметические знания, которые необходимы ученику, подчиненному или начальнику». Интересно, что хотя сам Абу-л-Вафа был специалистом в применении индийских цифр, весь текст

его книги написан вообще без цифр, одними словами, а вычисления проводятся только в уме. К Х веку индийские цифры еще не нашли применения в деловых кругах. То, что Абу-л-Вафа интересуется золотым сечением, видно из другой его книги – «О том, что необходимо ремесленнику из геометрических построений». В этой книге Абу-л-Вафа приводит изобретательные методы построения правильного пятиугольника и десятиугольника, вписывания правильных многоугольников в окружности и в другие многоугольники. Уникальную черту его работы составляет серия задач, которые он решает при помощи линейки (прямой, без делений) и циркуля, в котором угол между ножками зафиксирован (так называемый «ржавый циркуль»). Возможно, на этот жанр ученого вдохновило «Собрание» Паппа, однако не исключено, что такие решения просто отражают подход Абу-л-Вафы к практическим задачам: решения при помощи циркуля с фиксированным углом между ножками более точны.

Книги этих и других арабских математиков несколько углубили знания о золотом сечении, и их открытия сыграли важную, хотя и не очень большую роль. Как часто бывает в науке, подобные подготовительные периоды медленного прогресса необходимы для следующего прорыва. Великий драматург Джордж Бернард Шоу как-то выразил свое представление о прогрессе следующими словами: «Разумный человек приспосабливается к миру; неразумный – упорно пытается приспособить мир к себе. Поэтому прогресс зависит от неразумных людей». В случае золотого сечения квантовый скачок дожидался появления одного из самых выдающихся математиков Средневековой Европы – Леонардо Пизанского.

Сын доброй матери-природы

Девять индийских цифр – 1, 2, 3, 4, 5, 6, 7, 8 и 9 – и знак 0… позволяют записать любое число, как будет показано ниже.

Леонардо Фибоначчи (ок. 1170 – ок. 1250).

Этими словами Леонардо Пизанский (по-латыни – Leonardus Pisanus), известный также как Леонардо Фибоначчи, начал свою первую и самую известную книгу – «Liber abaci» («Книгу абака»), увидевшую свет в 1202 году. Ко времени появления этой книги с индо-арабскими цифрами, которыми мы пользуемся сегодня, были знакомы лишь несколько привилегированных европейских интеллектуалов, взявших на себя труд изучить переводы книг аль-Хорезми и Абу Камила. Некоторое время Фибоначчи помогал отцу – отец Леонардо был чиновником по таможенным и торговым делам в городе Беджаи (на территории современного Алжира), а затем путешествовал и по другим средиземноморским странам, в том числе побывал в Греции, Египте и Сирии, так что у него была возможность изучить и сравнить разные системы записи чисел и методы проведения арифметических операций. В конце концов Фибоначчи пришел к выводу, что индо-арабские цифры, при помощи которых числа записывались в позиционной системе, гораздо лучше всех прочих, и первые семь глав своего труда посвятил объяснениям, что такое индо-арабские цифры и как применять их на практике.

Леонардо Фибоначчи родился в 1170 году в семье дельца и правительственного чиновника по имени Гильельмо. Прозвище Фибоначчи (от латинского «filius Bonacci», «сын семьи Боначчи» или «сын доброй матери-природы»), вероятнее всего, придумал историк математики Гийом Либри в примечании к своей книге «История математических наук в Италии», вышедшей в 1838 году (Guillaume Libri. Histoire des Sciences Mathematique en Italie), хотя некоторые исследователи считают, что впервые это слово встречается у итальянских математиков конца XVIII века. В некоторых рукописях и документах Леонардо называет себя либо Леонардо Биголло (или Леонарди Биголли Пизани), где слово «Bigollo» означает что-то вроде «путешественник» или «важное лицо» – на тосканском и венецианском диалектах соответственно. Пиза XII века была оживленным морским портом, через который шла торговля и с материка, и из заморских стран. Дальневосточные специи проходили через Пизу на своем пути в Северную Европу, и их пути пересекались в порту с путями вина, соли и масла, перевозившихся в разные области Италии, Сицилии и Сардинии. В Пизе процветала кожевенная промышленность, козлиные шкуры для которой ввозили из Северной Африки, и по берегам реки Арно, на которой стоит город, часто можно было встретить дубильщиков, обрабатывавших кожи. Также город славился кузнецами и корабелами. Сегодня главная достопримечательность Пизы – покосившаяся башня, строительство которой началось в годы юности Фибоначчи. Очевидно, для всей этой бурной коммерческой деятельности нужна была обширная документация и учет запасов и цен. Несомненно, у Леонардо были возможности наблюдать разнообразных писцов за работой – он видел, как они составляли прейскуранты римскими цифрами и складывали числа на счетах-абаке. Арифметические действия с римскими цифрами – это вам не шутки. Например, чтобы получить сумму 3786 и 3843, нужно сложить MMMDCCLXXXVI и MMMDCCCXLIII. Ну как, громоздко? Это вы еще не пробовали умножать эти числа. Однако пока средневековым дельцам не приходилось выходить за пределы простого сложения и вычитания, им на худой конец годились и римские цифры. Римским цифрам, само собой, недоставало одной фундаментальной составляющей – позиционной системы, такой, в которой число, записанное как 547, на самом деле означает (5 x 102) + (4 x 101) + (7 x 100). Отсутствие позиционного принципа записи в Западной Европе преодолевали при помощи счетов-абака. Вероятно, слово «абак» произошло от древнееврейского слова «avaq» – «пыль», поскольку первые вычисления, по всей видимости, производились на доске, посыпанной песком, на которой палочкой выводили цифры. Во времена Фибоначчи это уже были более или менее привычные для нас бухгалтерские счеты с бусинами, которые ездили по проволокам. Разные виды счетов играли роль позиционной системы. У типичных счетов было четыре проволоки, бусины на нижней играли роль единиц, на второй снизу – десятков, на третьей – сотен и на четвертой – тысяч. Так что хотя при простых арифметических операциях счеты очень помогали (я был потрясен, когда во время поездки в Москву в 1990 году обнаружил, что на кассе в гостиничном кафе считают на счетах!), для более сложных вычислений они, конечно, совсем не годились. О том, чтобы подсчитать на счетах «миллиарды и миллиарды», о которых пишет популяризатор астрономии Карл Саган, не может быть и речи.

В городе Беджаи в Алжире Фибоначчи познакомился с искусством записи при помощи девяти индийских цифр – вероятно, как он сам выразился, под «блестящим руководством» наставника-араба. Затем Фибоначчи объехал все Средиземноморье, где еще сильнее расширил свой математический кругозор, после чего и решил опубликовать книгу, при помощи которой надеялся шире внедрить индо-арабские цифры в коммерческий обиход. В этой книге Фибоначчи скрупулезно объясняет, как переводить римские числа в новую систему и как производить арифметические операции с новыми цифрами. Он приводит многочисленные примеры, где демонстрируется применение «новой математики» для решения самых разных задач – от коммерческих сделок и заполнения и опорожнения резервуаров до движения судов. В начале книги Фибоначчи счел нужным извиниться перед читателем: «Если я случайно упустил что-то более или менее нужное или относящееся к делу, прошу простить меня, поскольку у всех есть недостатки и невозможно все предусмотреть».

Поделиться:
Популярные книги

Ученичество. Книга 2

Понарошку Евгений
2. Государственный маг
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ученичество. Книга 2

Безродный

Коган Мстислав Константинович
1. Игра не для слабых
Фантастика:
боевая фантастика
альтернативная история
6.67
рейтинг книги
Безродный

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Его огонь горит для меня. Том 2

Муратова Ульяна
2. Мир Карастели
Фантастика:
юмористическая фантастика
5.40
рейтинг книги
Его огонь горит для меня. Том 2

Отверженный III: Вызов

Опсокополос Алексис
3. Отверженный
Фантастика:
фэнтези
альтернативная история
7.73
рейтинг книги
Отверженный III: Вызов

Царь Федор. Трилогия

Злотников Роман Валерьевич
Царь Федор
Фантастика:
альтернативная история
8.68
рейтинг книги
Царь Федор. Трилогия

Варлорд

Астахов Евгений Евгеньевич
3. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Варлорд

Лорд Системы 13

Токсик Саша
13. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 13

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Темный Кластер

Кораблев Родион
Другая сторона
Фантастика:
боевая фантастика
5.00
рейтинг книги
Темный Кластер

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка