Чудесная жизнь клеток: как мы живем и почему мы умираем
Шрифт:
При исследовании клеток ученым зачастую необходимо иметь в своем распоряжении большое количество одинакового материала для проведения биохимического анализа. Извлечение клеток из живого организма — если только речь не идет о клетках крови — представляет собой немалую трудность. Поэтому встал вопрос о том, чтобы научиться выращивать их в искусственной питательной среде. Такие технологии стали разрабатывать с конца 1890-х годов, настоящий же прорыв в этой области произошел в 1907 году, когда ученые научились искусственно культивировать клетки тканей в течение нескольких недель.
Большинство клеток, изъятых из живого организма и помещенных в искусственную питательную среду, растут там в течение ограниченного периода времени — по причинам, которые будут объяснены позднее. Однако в процессе
Ученые серьезно продвинулись вперед, когда научились выделять из ткани клетки разных типов. Причем не беда, если первоначально удается выделить слишком малое число клеток какого-то одного типа — искусственная питательная среда поможет увеличить их количество. При этом большая часть клеток в искусственной среде сохраняет свои изначальные свойства: у нервных клеток вытягиваются длинные отростки-аксоны в поисках тех объектов, куда они могут передать нервный импульс, мускульные клетки непроизвольно сокращаются, а клетки ткани могут, размножаясь, формировать новые слои.
Все это позволило дать твердое научное обоснование клеточной теории. От того, как функционируют клетки, зависит жизнедеятельность организма и развитие в нем различных заболеваний, которые являются следствием неправильного функционирования клеток. Такой подход позволяет анализировать болезненные процессы на клеточном уровне. Он применяется при патологоанатомических исследованиях, когда определенные участки тканей исследуются при помощи микроскопа, чтобы выявить отклонения в развитии клеток, приводящие к болезни.
Клеточная теория позволила выработать общий универсальный подход к проблемам биологии. Эта теория подчеркивает глубинное единство всего живого и лежит в основе концепции о том, что все живые организмы представляют собой своеобразные «республики элементарных живых частиц» — иными словами, являются сообществом клеток.
Все клетки происходят от одного и того же общего прародителя, и все они в процессе эволюции сохранили свои основные базовые свойства. Подобные свойства клеток и живых организмов обусловливают то, что познание особенностей функционирования одного живого организма способно в большинстве случаев обеспечить понимание и познание другого живого организма, включая и человеческий, что крайне ценно, ведь с человеческим организмом особенно не поэкспериментируешь, в то время как эксперименты на мышах, лягушках, мушках, морских ежах, червях и бактериях способны дать нам знания, касающиеся всего живого, в том числе и нас самих. Например, обитающая в человеческом кишечнике бактерия Escherichia coli, которая вырабатывает 4300 различных белков, хорошо растет и быстро размножается. Исследованиям этой бактерии мы обязаны значительному росту наших знаний о молекулярных основах жизнедеятельности клеток, включая знания о воспроизводстве информации ДНК и белковом синтезе. Изучение многоклеточных животных, таких, как плодовые мушки, заложило основы классической генетики. Изучение лягушек, мышей и цыплят позволило узнать особенности эмбрионального развития позвоночных животных.
Рассказывая же в этой книге об основных процессах жизнедеятельности, мы сосредоточимся прежде всего на человеческих клетках.
2. Как мы живем
Как воспроизводятся клетки, как поддерживается порядок в сообществах клеток, как клетки зарождаются и как умирают
Лишь изучая клетки, мы можем выяснить, что же такое жизнь. Я не буду пытаться решить непосильную задачу и дать всеобъемлющее определение жизни — вместо этого я просто опишу ее главные свойства. Первым является способность к размножению, к воспроизводству самой себя, что происходит, например, когда клетка вырастает и делится на две новые клетки. Вторым свойством является способность к упорядочиванию и выработке энергии для происходящих в клетке процессов — таких, как перемещение молекул и синтез новых химических соединений. Третье свойство — способность клетки к развитию, а четвертое, и последнее, — к смерти. Удивительно, но во всех этих процессах ключевую роль играют одни и те же нитевидные молекулярные образования — ДНК и белки.
Белки внутри клеток — настоящие волшебники. Однако еще более важную роль играют ДНК, из которых образуются гены в хромосомах и которые обеспечивают матрицы для строительства новых белков. При этом все ДНК обладают уникальным общим свойством — это единственное внутриклеточное образование, которое точно воспроизводит само себя. Перед тем как происходит деление клетки, создается точная копия-двойник ее ДНК. Определяя структуру различных белков клетки, ДНК эффективно контролирует многие из происходящих внутри клетки процессов.
ДНК содержатся в клеточном ядре — на находящемся внутри клетки плоском диске, окруженном оболочкой. Оболочка эта очень тонка, и даже при рассматривании в мощный электронный микроскоп представляет собой лишь тонкую линию. Однако именно она является внешними границами клетки и отделяет ее содержимое от окружающей среды. Но клеточная оболочка — это нечто большее, чем просто граница клетки, ибо она содержит в себе специальные белки, которые позволяют определенным молекулам легко проникать внутрь клетки и так же легко выводиться из нее; одновременно они служат преградой для проникновения других молекул. Словом, белки клеточной оболочки играют активную роль в переносе отдельных молекул и атомов, которые вводятся в клетку и выводятся из нее. Ведь в клетку необходимо ввести пищу и обеспечить вывод из нее продуктов распада. Особой функцией клеточной оболочки является ее способность проводить электрические импульсы, что позволяет действовать в организме клеткам нервной системы.
Белки, которых всего в нашем организме около ста тысяч разновидностей, представляют собой связанные друг с другом цепочки небольших простых молекул, называемых аминокислотами. В белках содержится двадцать различных видов аминокислот. Десять из них вырабатываются клетками нашего организма, другие же десять мы получаем из пищи.
Белки отличаются друг от друга числом аминокислот и последовательностью их расположения. От этого зависят трехмерная структура и принципы функционирования каждого отдельного белка. Белки похожи на акробатов, которые складываются, изгибаются и меняют свою форму самым причудливым образом. Большая часть наших клеток содержит несколько тысяч различных белков, всего же в организме находятся миллионы белков самых разных видов. Если было бы возможно проникнуть внутрь этого миниатюрного царства и окинуть его взглядом, то оставалось бы только удивляться, как что-то может выйти из всей этой лихорадочной активности, ибо белки не только меняют форму, но и большую часть времени движутся очень быстро и хаотично — каждые несколько секунд они входят в соприкосновение с миллионами других молекул. Почти все, что происходит внутри наших клеток, является следствием взаимодействия белков друг с другом или с другими молекулами — нуклеиновыми кислотами, углеводами и жирами.
Самой важной функцией клетки является ее способность образовывать новые клетки, что происходит благодаря ее увеличению и последующему делению. Новые клетки формируются за счет роста и последующего деления существующих клеток. Однако прежде чем мы перейдем к изучению процесса деления клеток, мы должны понять, как происходит подготовка к этому событию.
Содержимое готовящейся к делению клетки удваивается, чтобы каждая из двух дочерних клеток получила все, что ей требуется: гены, белки, митохондрии, клеточную оболочку и множество других необходимых молекул. Чтобы это стало возможным, клетка должна сначала значительно вырасти. И действительно, перед моментом разделения клетка весьма увеличивается в размерах.