Чтение онлайн

на главную - закладки

Жанры

Чудесная жизнь клеток: как мы живем и почему мы умираем
Шрифт:

То, что собиралось в центре клетки на веретене, и представляло собой наследственный материал клеток — но кто мог понять это в ту пору? В 1870-е годы ученые установили лишь, что этот материал представляет собой набор микротрубочек различных размеров, каждая из которых делится надвое, и затем образовавшиеся пары разделяются и расходятся к разным полюсам клетки-матери, чтобы оказаться в новых клетках. Эти микротрубочки ученые назвали хромосомами.

Профессор зоологии Лейденского университета Эдуард ван Бенеден во время изучения паразитического червя установил, что в его клетках содержится всего несколько хромосом. Благодаря этому он мог легко проследить за судьбой каждой из хромосом при делении клеток, то есть в процессе митоза. Ван Бенеден установил, что каждая пара хромосом делится в центре клетки, после чего хромосомы отходят к противоположным полюсам клетки. В ходе этих исследований ван Бенеден установил также, чем определяются половые различия особей.

Животные, размножающиеся половым путем, как, например, люди, половину своих хромосом получают от матери, половину — от отца. Это происходит в момент оплодотворения яйцеклетки. У людей каждый из родителей дает плоду по 23 хромосомы, в результате чего оплодотворенная яйцеклетка имеет 46 хромосом, и точно такое же количество хромосом содержится в каждой клетке человеческого эмбриона.

Изучая животное, в каждой клетке которого содержалось всего по две хромосомы, ван Бенеден догадался, что одна из этих хромосом была получена из отцовского сперматозоида, а другая — из материнской яйцеклетки. Таким образом, яйцеклетка и сперматозоид содержат лишь по одной хромосоме, и, когда сперматозоид оплодотворяет яйцеклетку, она получает две хромосомы, и далее от нее путем деления образуются все без исключения клетки данного животного. Но как же взрослая особь, каждая из клеток которой содержит по две хромосомы, производит яйцеклетки и сперматозоиды, которые содержат лишь по одной хромосоме? Выяснилось, что процесс уполовинивания числа хромосом, мейоз, происходит одновременно с развитием яйцеклеток и сперматозоидов. Они проходят через две стадии деления клеток, однако при этом число хромосом в них удваивается лишь один раз. Мейоз — это один из основных генетических процессов. У людей, клетки которых содержат по 46 хромосом, в яйцеклетках и сперматозоидах получается по 23 хромосомы.

Главный вопрос, который так и не смогли разрешить в то время, как же именно передаются от родителей к детям их генетические характеристики. Особенно сложным он оказался для Чарлза Дарвина, выдвинувшего теорию эволюции и естественного отбора. Труды Дарвина по этой проблеме были впервые опубликованы в 1859 году. Каким же образом возникает разнообразие видов и их разнообразные отличительные характеристики, которые затем подвергаются естественному отбору? Дарвин, который не знал о теории клеток, полагал, что исходный материал, из которого развивается эмбрион, происходит из всех без исключения частей тел его родителей. Это стало известно под названием «теории пангенезиса». Племянник Дарвина Фрэнсис Галстон, не веривший в теорию пангенезиса, выдвинул предположение о том, что наследственный материал каким-то образом передается из поколения в поколение.

Фундаментальный прорыв в области генетики совершил Грегор Мендель. Рассказывать об этом весьма сложно, ибо неясно, насколько сам Мендель сознавал все его значение.

Результаты экспериментов Менделя с горохом в монастырском саду под Брно были опубликованы в издаваемом в Брно естественно-историческом журнале в 1866 году, однако они привлекли к себе очень мало внимания. Мендель писал, что характерные признаки гибридов гороха — такие, как округлая или угловатая форма семян, их желтый или зеленый оттенок, — следует считать наследственными признаками. Однако проявляются далеко не все признаки, поскольку некоторые из них подавляются каким-то одним, доминантным. При скрещивании рослых и малорослых сортов все потомство было высокорослым. Когда же между собой скрещивались эти гибриды, то треть потомства оказывалась низкорослым, а две трети — высокорослым. Речь о том, что за все это отвечают гены, в ту пору еще не шла.

Теодор Бовери из университета Вюрцбурга развил выводы ван Бенедена, сделанные в результате наблюдений за хромосомами, и доказал, что при развитии клетки все их характеристики сохраняются неизменными. Бовери пришел к выводу о том, что хромосомы являются независимыми образованиями по отношению к самой клетке. Он также обнаружил, что если в яйцеклетку морского ежа проникало больше одного сперматозоида, то в оплодотворенной яйцеклетке оказывалось избыточное количество хромосом и эмбрион развивался с дефектами. Исследование хромосом в клетках дождевых червей и морских ежей привело Бовери к выводу о том, что хромосомы переходят во вновь образовывавшиеся клетки при делении клеток и что именно они являются носителями наследственной информации. В 1902 году Бовери увидел взаимосвязь между своей теорией об индивидуальном характере хромосом и исследованиями Менделя о передаче наследственных признаков.

Бовери имел дело с генами, хотя их еще не называли так. У самого термина «ген» — весьма запутанное происхождение. В 1889 году Гуго де Вриес придумал термин «панген», которым он решил обозначить мельчайшую единицу, заключающую в себе наследственные характеристики. Затем этот термин укоротил до «гена» Вильгельм Йоханнесен. В 1908 году Уильям Бейтсон, зоолог из Кембриджского университета, описывая вопросы наследственности и изменения видов, написал: «Крайне необходимо придумать слово для того, чтобы обозначить само понятие об этом, и в этой связи слово „генетика“ вполне бы подошло».

Ученым, который с полной достоверностью установил существование генов, стал американец Хант Морган, сделавший это в первой четверти XX столетия. Морган был биологом-исследователем, однако никаких особых успехов он не добился. Однажды он изучал дрозофил и заметил, что одна из дрозофил обладает необычным свойством — белыми глазами (в то время как обычно у дрозофил глаза красные). Морган доказал, что эта необычная особенность была связана с полом дрозофилы.

Затем Морган обнаружил еще трех дрозофил, имеющих общие характерные признаки, которые были связаны с полом, и смог доказать, что за каждый из них отвечала особая область хромосомы, или ген. После этого ученые смогли наконец точно определить место генов в составе хромосом, и это позволило заложить фундамент науки генетики. Было признано, что гены — единственный механизм, отвечающий за передачу наследственных признаков от родителей потомству. Дрозофилы до сих пор остаются важным объектом генетических исследований, а Моргану за его достижения в этой сфере в 1933 году была присуждена Нобелевская премия.

Большая часть исследователей полагала, что ген сформирован на основе белка. Обнаружение в 1920-е годы вирусов, которые обладали способностью воспроизводиться внутри бактерий, подтвердило верность этих взглядов, поскольку исследования показали, что в 90 процентах случаев вирусы состояли из белка. В 1928 году были получены данные, которые указывали на то, что наследственная информация содержится в ДНК. Исследуя бактерию, которая вызывала пневмонию, британский медик и ученый-генетик Фред Гриффитс обнаружил, что эта бактерия существует в двух разновидностях: вирулентной, вызывающей заболевание в подопытных мышах, и безвредной. Когда он нагревал раствор с вирулентными штаммами, они также становились безвредными. Однако, к его удивлению, если он вводил подопытным мышам раствор с вирулентными штаммами, который был обезврежен в ходе нагревания, вместе с раствором с безвредными штаммами, то мыши заболевали пневмонией. Получалось, что вирулентные штаммы даже после того, как их подвергли нагреванию, сохраняли способность передавать свои болезнетворные качества безвредным штаммам.

Для того чтобы выяснить, что же именно передается в этом случае, ученым потребовалось пятнадцать лет, и они установили, что передается именно ДНК. Это открытие вызвало удивление, поскольку в те годы ученые полагали, что передаваться должны белки. Что ДНК содержит наследственный материал, выяснилось в ходе проведенных в 1944 году экспериментов с вирусами. Сами вирусы состоят из белка и ДНК, и исследования доказали, что наследственная информация, которая приводила к образованию новых вирусов, содержалась лишь в ДНК. В конце 1940-х годов было доказано, что качества бактерии меняются не под воздействием белка, но под воздействием ДНК. Однако некоторые ученые сомневались, что гены образованы спиралями ДНК. Предположение, что наследственный материал содержится именно в ДНК, а не в белках, получило окончательное подтверждение в начале 1950-х годов после открытия Криком и Уотсоном двойной спирали ДНК. Затем последовало открытие механизма саморепродукции ДНК и обеспечения строительства белков согласно содержащемуся в ДНК наследственному коду. Так ученые начали приближаться к пониманию молекулярной основы функционирования клеток.

Они выяснили, в чем заключаются функции хромосом, однако функции митохондрий удалось разгадать только в 1950-х годах. Эти небольшие образования были обнаружены во всех клетках, кроме клеток бактерий, еще в XIX столетии, однако выяснить их функцию тогда не смогли. Само название «митохондрии» отражает впечатления от их внешнего вида, зафиксированное впервые обнаружившими их учеными, — в основе его лежат греческие слова «нить» и «гранулы». В течение многих лет после открытия митохондрий ученые ошибочно полагали, что их функция состоит в переносе наследственной информации. Только в 1950-е годы их удалось извлечь из клеток и выяснить их структуру при помощи электронного микроскопа. Отделить митохондрии от других структур клетки удалось следующим образом: большое количество клеток надрезали и помещали в центрифугу. Поскольку удельный вес митохондрий отличается от удельного веса других структур клетки, в процессе центрифугования они отделяются. В результате биохимического исследования митохондрий ученые установили, что они обеспечивают клетки энергией, поставляя ее в форме АТФ — аденозинтрифосфорной кислоты.

Популярные книги

Смерть

Тарасов Владимир
2. Некромант- Один в поле не воин.
Фантастика:
фэнтези
5.50
рейтинг книги
Смерть

Мимик нового Мира 7

Северный Лис
6. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 7

Чужой ребенок

Зайцева Мария
1. Чужие люди
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Чужой ребенок

Бальмануг. (не) Баронесса

Лашина Полина
1. Мир Десяти
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Бальмануг. (не) Баронесса

Мимик нового Мира 3

Северный Лис
2. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 3

Довлатов. Сонный лекарь 3

Голд Джон
3. Не вывожу
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 3

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Аленушка. Уж попала, так попала

Беж Рина
Фантастика:
фэнтези
5.25
рейтинг книги
Аленушка. Уж попала, так попала

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Кодекс Охотника. Книга XXII

Винокуров Юрий
22. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXII

Сын Петра. Том 1. Бесенок

Ланцов Михаил Алексеевич
1. Сын Петра
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Сын Петра. Том 1. Бесенок

Краш-тест для майора

Рам Янка
3. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
эро литература
6.25
рейтинг книги
Краш-тест для майора

Искушение генерала драконов

Лунёва Мария
2. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Искушение генерала драконов

Последний реанорец. Том I и Том II

Павлов Вел
1. Высшая Речь
Фантастика:
фэнтези
7.62
рейтинг книги
Последний реанорец. Том I и Том II