Чудесная жизнь клеток: как мы живем и почему мы умираем
Шрифт:
Актин — это многоликий белок, способный легко вытягиваться в нити и затем распадаться опять на элементарные составляющие. Он может образовывать и жесткие ткани, и — вместе с миозином — сократительные волокна, которые во время деления клетки создают сократительное кольцо, приводящее к образованию двух клеток из одной делящейся. Актин обеспечивает способность клетки к движению. Особенно наглядно это проявляется при движении белых кровяных телец через ткани, когда они внедряются туда для уничтожения вторгнувшихся в организм вредоносных бактерий.
В передней части двигающейся клетки имеется густой пучок актиновых нитей. Разрастаясь, они начинают давить на клеточную оболочку, заставляя ее выпячиваться
Непрерывное движение внутри клетки в основном вызвано движением митохондрий и небольших пузырьков, окруженных оболочкой, которые перемещаются скачкообразными движениями. В основе этих движений лежит тот же принцип, что и в основе мускульных сокращений. Находящиеся в клетке белковые нити и микротрубочки являются теми «рельсами», вдоль которых совершаются все эти движения. Осуществляется же движение благодаря двигательным белкам, которые связываются одним концом с оболочкой пузырька или митохондрии и затем путешествуют вместе с ними вдоль белковой нити или микротрубочки. Продвижение пузырька или митохондрии происходит за счет того, что с ними поочередно связываются последовательно расположенные двигательные белки, «вытягивающие» их таким образом вперед. Все это напоминает то, как тянутся относительно друг друга во время мускульных сокращений актиновые и миозиновые нити.
Двигательные белки отвечают также за движения ресничек. Многие наши клетки имеют так называемые реснички — что-то вроде одиночного волоска, находящегося на внешней оболочке. Эта ресничка изгибается и выпрямляется, заставляя окружающую жидкость обтекать клетку. Подобные реснички очищают, например, наши легкие: миллиарды ресничек в легких все время находятся в непрерывном движении, освобождая их от пыли и выводя ее наружу через рот. Сперматозоид, который после эякуляции устремляется навстречу яйцеклетке, также движется за счет похожего на ресничку отростка, но только значительно большего по своим размерам. Этот отросток изгибается и заставляет сперматозоид продвигаться вперед с завидной скоростью, превращая его в подобие оснащенного мощными ластами пловца.
Основным механизмом, приводящим в движение реснички, являются девять пар микротрубочек, собранных в кольцеобразную структуру, которая может изгибаться за счет скольжения микротрубочек относительно друг друга. Это скольжение осуществляется благодаря особым двигательным белкам. Недавно было признано, что гораздо больше клеток, нежели считалось ранее, имеют реснички и что при помощи этих ресничек клетки могут подавать друг другу различные сигналы.
Белки, расположенные на внешней оболочке клетки, также исполняют важнейшие функции. К внешней оболочке привязываются молекулы сахаров, создавая нечто вроде дополнительного защитного чехла, предохраняющего клетку от механических повреждений и неблагоприятного химического воздействия. На внешней поверхности клеточной оболочки имеются также белки, которые связываются с белками, расположенными на поверхностях других клеток, соединяя тем самым клетки воедино и позволяя им образовать клеточную ткань.
На внешней поверхности клеточных оболочек размещаются также белковые рецепторы, которые позволяют улавливать и передавать внутрь клетки сигналы, поступающие от других клеток. Поступающая таким образом информация передается прежде всего генам, находящимся в клеточном ядре, и оповещает их о том, что происходит в других клетках. Передача подобных сигналов протекает в виде сложных реакций и взаимодействия различных клеточных белков.
Клетки должны иметь возможность воспринимать сигналы соседних клеток, а также сигналы, которые поступают им издалека в виде гормонов. Например, гормон инсулин сигнализирует клеткам о том, что они должны позволить молекулам сахаров проникать в себя. В силу того, что белки внешней оболочки клетки играют определяющую роль в связях клетки с окружающим ее миром, число разновидностей таких белков достигает десяти тысяч, и они представляют собой значительную составляющую часть общей армии белков.
Основу клеточной оболочки составляют молекулы жиров, или липиды, и молекулы белков. Ключевая роль молекул жиров в строительстве клеточной оболочки основана на том, что они по природе своей отталкивают воду. Молекулы жиров не смешиваются с водой, а также держатся отдельно друг от друга. Они покрывают оболочку клетки тончайшим двойным слоем, благодаря чему она становится гибкой и подвижной и одновременно практически непроницаемой для молекул, растворимых в воде, — таких, как молекулы глюкозы. Размещенные в клеточной оболочке жировые молекулы похожи на крошечных животных, которые не выносят воду: головная часть этих молекул делает все, чтобы убраться из области, где есть вода, а хвостовая часть способна вынести лишь незначительный контакт с водой.
В образующем клеточную оболочку жировом слое размещены и молекулы белков, составляющие примерно половину всех молекул клеточной оболочки; они способны контролировать перенос и перемещение молекул сквозь клеточную оболочку. Благодаря этому клеточная оболочка обладает высокой степенью подвижности и гибкости, что позволяет ей принимать любую форму при изменении формы самой клетки, и не разрываться даже тогда, когда что-то протыкает ее извне. Новая клеточная оболочка формируется клеточным пузырьками — мельчайшими образованиями, которые, в свою очередь, также имеют оболочку. Легкость, с которой жировые молекулы образуют двойной защитный слой, сыграла важную роль в эволюции клеточной оболочки и самой клетки в целом.
Несмотря на то что жировые молекулы не терпят воды, вода все же способна проникать сквозь клеточную оболочку внутрь клетки, а также выводиться из нее. Но жировая оболочка пропускает внутрь в основном молекулы воды, не имеющие электрического заряда. Те же молекулы, что содержат электрический заряд — например, натрий и ионы калия, — проникают сквозь оболочку с большим трудом.
Ион — это атом или молекула, которая либо потеряла, либо приобрела один или два электрона, в результате чего получила отрицательный или положительный электрический заряд. Клеточную оболочку ионы преодолевают при помощи специального механизма транспортировки, состоящего из белков. Размещенные в клеточной оболочке белки также обеспечивают проникновение в клетку и вывод из нее крупных молекул. Клеточная оболочка содержит в себе две белковые системы по транспортировке молекул: одни белки обеспечивают чужим молекулам каналы проникновения сквозь оболочку, а другие выступают в роли их непосредственных переносчиков.
Концентрация ионов натрия вне клеток примерно в 20 раз выше их концентрации внутри клеток. Концентрация ионов калия вне клеток, наоборот, примерно в 20 раз ниже их концентрации внутри клеток. Подобная разница достигается за счет работы белкового «натриевого насоса» — белка, который выносит из клетки молекулы натрия и закачивает молекулы калия. Работа этого «насоса» чрезвычайно важна для того, чтобы не допустить разрыв клеточной оболочки под напором нагнетаемой в клетку воды. Если работа белкового «насоса» остановится, то давление разорвет оболочку клетки и клетка погибнет. Около одной трети всей энергии клетки — то есть около одной трети вашей энергии — уходит на обеспечение работы этого насоса.