Чтение онлайн

на главную

Жанры

Далекое будущее Вселенной Эсхатология в космической перспективе
Шрифт:

Первый шаг можно представить в виде g 1— единственной и простой воспроизводящейся характеристики, повышающей выживание и распространение вида, некоей чрезвычайно простой «функции», f 1:

[g 1—>f 1]

Пожалуй, примером таких живых существ могут служить глины, образующие ил на дне морей. Эти глины представляют собой крошечные гибкие планки в несколько микронов шириной и несколько нанометров толщиной. Планки, в свою очередь, представляют собой пачки, состоящие, вероятно, из трех или четырех слоев, структура которых напоминает слюду. Как правило, эти планки крепятся к песчинкам (в том числе к зернам нефтеносных песчаников) на дне моря [14]. По–видимому, кристаллики ила растут благодаря расширению планок исключительно за счет атомов, прикрепляющихся к их краям. Таким образом, планки сохраняют

постоянную толщину. Как правило, имеется три или четыре слюдоподобных слоя. Таким образом, толщина планки является воспроизводимой чертой, хотя она может и варьировать благодаря случайностям роста. Можно спросить: имеет ли толщина в три–четыре слоя какое-то селективное преимущество? Возможно. Ил растет благодаря «питательным» растворам, циркулирующим в порах песчаника. Слишком разросшиеся кристаллы могут загородить собой поры и снизить или остановить приток питательных веществ. Они не смогут расти и распространяться дальше. Слишком тонкие и хрупкие кристаллы легко сломать или оторвать от песчинок, к которым они прикрепляются: в этом случае они тоже закупорят поры, расположенные ниже по течению. (Именно это случается иногда, когда при добыче нефти из слоя песчаника прилагается слишком большое давление.) Возможно, толщина в три–четыре слоя идеальна для сохранения притока питательных веществ!

Разумеется, речь идет о крохотномобъеме информации, да и мое объяснение в данном случае может быть неверным. Но заметим, что даже в этом случае можно говорить на биологическом языке: не только о термодинамической стабильности, доступности катионов, легкости формирования и так далее, но также о том, насколько та или иная структурная характеристика приспособлена для своего собственного выживания и распространения. Эволюция путем естественного отбора может начинаться и на самом низком уровне — были бы подходящие материалы. Их уже можно называть генетическими материалами, хотя и очень скромными.

Следующим шагом может стать сосуществование и сотрудничество различных материалов, воспроизводящих различные полезные для выживания черты («функции»):

[g1 —> f 1; g 2—> f 2; g 3—> f 3; и так далее]

Я не буду пытаться описать различные ранние функции (подробное рассмотрение этого вопроса можно найти в [3]), отмечу только, что для генов минеральных кристаллов эти функции могли включать в себя манипуляции с локально возникающими органическими молекулами. Сейчас существует значительная литература по активности глины и других подобных минералов в адсорбировании органических молекул определенным образом — расположении их между слоями минерала или по его краям, а также в катализации органических химических реакций [43] . Есть причины считать, что эти действия функциональны в описанном выше смысле — способствуют выживанию и распространению: «гену глины» разумно окружить себя органическими молекулами, которые будут способствовать его росту или же тем или иным способом защитят его, если внешние условия (например, рН) изменятся к худшему. Известно, что органические кислоты, например лимонная кислота, активно способствуют кристаллизации глинистых минералов, перенося нерастворимые иными путями катионы, например алюминия [19].

43

Обзор по этому вопросу см. в [5]. См. также многие статьи журнала «Происхождение жизни и эволюция биосферы», с сообщениями об исследованиях по возможной роли глины и других подобных минералов в возникновении жизни.

Следующим шагом эволюции могут стать многофункциональные генетические материалы:

[…G x—>f n, f n+1и т. д.]

Со временем синтез органических молекул в хорошо организованном минерально–генетическом ансамбле мог принять постоянный характер, что сделало возможным воспроизведение органических полимеров. Так появился на свет новый многофункциональный генетический материал — РНК–подобный полимер, способный воспроизводить сложную и дифференцированную информацию.

Так мы переходим к истории «мира РНК» [10, 9]. G x(РНК) начинает действовать косвенно, контролируя синтез других молекул, неспособных воспроизводиться самостоятельно, но создающих микромеханизмы (Y = белок):

Так возникает многофункциональная, косвенно действующая генетическая система (G x= ДНК), после чего отбрасываются ненужные минеральные «леса».

Это «жизнь, какой мы ее знаем». Структурные и каталитические функции f n, f п+1и т. д. выполняются РНК напрямую: f p, f p+1и бесчисленное множество других функций выполняется тысячами видов белков, каждый со своей особой структурой и уникальной последовательностью аминокислот, в свою очередь,

контролируемой последовательностью ДНК, из которой он произошел. Это удивительно сложная система, но с точки зрения теории эволюции вполне объяснимая.

7.4. Кандидаты на роль кристаллических генов

В поисках возможных минеральных генетических материалов стоит вспомнить о микрокристаллических материалах с сильной внутренней связью и кристаллической структурой, обладающих некоей сложной, квазислучайной вариабельностью (отчасти сравнимой с вариабельностью последовательностей ковалентно связанных блоков в молекулах ДНК), так что каждый индивидуальный кристалл может быть уникален. Многие подобные «дефекты» воздействуют на физико–химические параметры кристаллических материалов: размер и форму кристаллов, способность поглощать мелкие молекулы, каталитические эффекты и т. п. Главный вопрос состоит в том, стабильна ли «информация» об этих дефектах и может ли она воспроизводиться в процессе роста кристаллов. Ответ на это следующий: хотя наиболее стабильные «дефекты» не воспроизводятся, существуют «дефекты», которые это делают, иногда с поразительным успехом.

Приведем пример. Структурные слои слюды и слюдоподобных глин (см. выше) образуют достаточно сложную «бутербродную» структуру с семью атомными плоскостями в каждом слое. Эти сложные слои имеют отрицательный заряд и располагаются в кристалле «пачками», один над другим, с прокладками из катионов между ними. Однако кое в чем их структура асимметрична. Так, структуры верхней и нижней плоскостей, образованных атомами кислорода, хотя и идентичны, но расположены не совсем точно друг над другом. Этот сдвиг придает слою в целом направление, которое можно изобразить стрелкой. Возникает вопрос: как расположены эти «стрелки» в слоях, лежащих друг на друге?

Часто все они направлены в одну сторону. Это можно изобразить так:

—> —> —> —> —> —> —>

Но часто случается, что их направление чередуется:

Таковы наиболее распространенные «правильные типы» слюды. Но чаще встречаются отклонения — «неправильные типы», в принципе способные нести информацию, так же как и единичная неправильность в напластовании (своего рода ДНК). Более того, известны случаи, когда какая-то «неправильность» повто–ряется через абсолютно регулярные промежутки. Например, в образцах биотитовой слюды [1] было обнаружено следующее:

Похоже, что эти особенности возникают при росте кристаллов в результате процесса копирования [44] .

Еще одна форма чередования встречается в глинах и других веществах, где материал представляет собой пачку химически различных слоев, чередующихся в более или менее случайной последовательности. Поразительный пример такого рода — феррит бария. В нем часто наблюдаются повторения сложных и неправильных структур, иногда простирающиеся на толщину в сто нанометров и более [12]. Изучив рост кристаллов этого материала в Глазго и Пейсли, мы предположили существование механизма копирования, обеспечивающего длинные повторы [20]. Согласно этому предположению, изначальная плата, состоящая из случайной последовательности слоев, растет путем добавления атомов по сторонам, так что изначальная последовательность сохраняется. Пачки слоев, как и «планки» морского ила, тверды и гибки. Благодаря микроморфологии начальных кристаллов, их рост происходит, по–видимому, неравномерно в разных направлениях, формируя гибкую ветвящуюся систему («водорослевый рост»). При этом разные части одной и той же пачки могут накладываться друг на друга и затем сливаться, образуя более крупные фрагменты кристалла, в пределах которых последовательность слоев, присущая начальной плате, повторяется, быть может, много раз. Сам феррит бария, возможно, растет только при высоких температурах (наши эксперименты проводились примерно при 1300 градусах по Цельсию); однако мы склонны полагать, что «водорослевый рост» представляет собой общий механизм формирования длинных повторов, присущий многим материалам, в том числе и обсуждаемым выше типам слюды.

44

Подобные повторения могут возникать в процессе роста по спирали, как свидетельствует характерный спиральный рисунок на поверхности кристаллов [8]. Однако встречаются случаи очень длительных повторений, в которых этот механизм явно отсутствует. Очевидно, здесь задействуется какой-то альтернативный механизм копирования (см. [20]).

Ил и слюда могут кристаллизоваться при обычной температуре, хотя и медленно. Быстрый синтез слюды требует, как минимум, гидротермальных условий и нескольких сот градусов по Цельсию. Это соответствует предположению, что самые первые стадии эволюции могли иметь место в океанических гидротермальных системах [6, 11].

7.5. Долгосрочное выживание и различные виды панспермии

Многие виды организмов способны выживать в сложных условиях, находясь в состоянии так называемой «отсроченной жизни»: примеры этого — семена растений или споры бактерий. Можно сказать, что перед нами потенциальные формы жизни, сохраняющие одно из двух важнейших качеств полноценной живой системы — способность сохранять информацию. Другое ключевое требование — существование открытых систем, которым эта информация передается, но они не обязаны существовать вечно — им достаточно лишь появляться время от времени.

Поделиться:
Популярные книги

Его наследник

Безрукова Елена
1. Наследники Сильных
Любовные романы:
современные любовные романы
эро литература
5.87
рейтинг книги
Его наследник

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Системный Нуб 4

Тактарин Ринат
4. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб 4

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

(Не)нужная жена дракона

Углицкая Алина
5. Хроники Драконьей империи
Любовные романы:
любовно-фантастические романы
6.89
рейтинг книги
(Не)нужная жена дракона

Я Гордый часть 2

Машуков Тимур
2. Стальные яйца
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я Гордый часть 2

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Сотник

Ланцов Михаил Алексеевич
4. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Сотник

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Огни Эйнара. Долгожданная

Макушева Магда
1. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Эйнара. Долгожданная

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9