Далекое будущее Вселенной Эсхатология в космической перспективе
Шрифт:
15. Schrodinger, Е., What Is Life?(Cambridge University Press, Cambridge, 1944), chapter 4.
16. Shapiro, R., "Prebiotic Ribose Synthesis: A Critical Analysis", Orig. Life Evol Bio., 18,71–85 (1988).
17. Shapiro, R., "The Pre-biotic Role of Adenine: A Critical Analysis", Orig. LifeEvol. Bio., 25,83–98 (1995).
18. Sherrington, C, Man on His Nature(1937 Gifford Lecture; Cambridge University Press, Cambridge, 1940), chapter 3.
19. Siffert, В., "Clay Synthesis: The Role of Organic Complexing Agents", in Clay Minerals and the Origin of Life,eds. A. G. Cairns-Smith and H. Hartman (Cambridge University Press, Cambridge, 1986), 75–78.
20. Turner, G., Stewart,
8. Время без конца
Физика и биология в открытой вселенной [45]
45
Этот материал был впервые изложен в виде четырех лекций осенью 1978 года в Нью–Йоркском университете на «Лекциях Джеймса Артура о времени и его тайнах». Первая лекция обращена к широкой аудитории, три последующие — к аудитории физиков и астрономов. Впервые опубликован в: F. J. Dyson, Reviews of Modern Physics, 51, no. 3, 447–60 (июль 1979). Копирайт 1979 принадлежит Американскому физическому обществу. Материал используется с его разрешения.
Приведены количественные оценки трех классов феноменов, способных возникнуть в открытой космологической модели фридманновского типа. (1) Нормальные физические процессы, происходящие в течение очень долгих сроков. (2) Биологические процессы, возникающие в результате адаптации жизни к низким температурам в соответствии с постулированным нами законом масштабирования. (3) Радиокоммуникация между формами жизни, существующими в различных частях вселенной. Общее заключение этого анализа — открытую вселенную не обязательно ждет конечное состояние вечного покоя. Если предполагаемые градационные законы масштабирования верны, то жизнь и коммуникация, используя ограниченное количество энергии, могут существовать вечно.
Лекция I. Философия
Год назад Стивен Уэйнберг опубликовал замечательную книгу «Первые три минуты» (Weinberg, 1977); в ней он рассказывает широкой публике о том, каково состояние наших знаний о рождении вселенной. В шестой главе книги он подробно описывает, каким образом на пути наблюдения и изучения вселенной встала робость наших теоретиков:
Такое часто случается в физике: наша ошибка не в том, что мы слишком серьезно относимся к своим теориям, а в том, что не принимаем их всерьез. Нелегко в полной мере осознать, что цифры и уравнения, с которыми мы играем у себя за столом, имеют какое-то отношение к реальному миру. Хуже того, порой, кажется, возникает какое-то молчаливое соглашение о том, что определенные феномены просто не годятся для серьезного теоретического и экспериментального изучения. Альфер, Герман и Гамов (1948) заслуживают величайшего уважения прежде всего за то, что вообще решились серьезно рассмотреть вопрос о новорожденной вселенной и попытались понять, какие из известных нам физических законов применимы к первым трем минутам ее существования. Но даже они не сделали последнего шага — не убедили радиоастрономов поискать микроволновый радиационный фон. Самый важный из результатов, достигнутых открытием радиационного фона с температурой 3°К (Пенсиас и Уилсон, 1965): оно наконец заставило людей всерьез задуматься о том, что ранняя вселенная действительно существовала.
Благодаря Пенсиасу и Уилсону, Уэйнбергу и другим, изучение начала вселенной в наше время считается вполне серьезным и уважаемым занятием. Профессиональным физикам, занятым первыми тремя минутами — или первой микросекундой — больше не приходится смущаться, говоря о своей работе. А вот с концом вселенной все обстоит совсем по–другому. Разыскивая литературу по этой теме, я нашел всего несколько статей (Rees, 1969; Davies, 1973; Islam, 1977 и 1979; Barrow and Tipler, 1978).
Сам Уэйнберг не избежал предрассудков, которые я стараюсь развеять. В конце своей книги, посвященной прошлому вселенной, он дает краткое приложение, касающееся ее будущего. Первые три минуты он описывает на ста пятидесяти страницах, а всему, что ждет нас дальше, отводит всего пять страниц. Если оставить в стороне технические подробности, его взгляд на будущее выражается одной фразой:
Чем понятнее для нас вселенная, тем бессмысленнее она нам представляется.
Здесь Уэйнберг, возможно сам того не желая, указывает на реальную проблему. Невозможно детально описать долгосрочное будущее вселенной, не учитывая влияния жизни и разума. Невозможно вычислить способности жизни и разума, не затрагивая хотя бы вскользь философских вопросов. Если мы хотим понять, как может разумная жизнь использовать физическое развитие вселенной в своих собственных целях, нам не удастся полностью избежать вопроса о том, каковы могут быть ценности и цели разумной жизни. Но стоит упомянуть слова «ценность» и «цель» — и мы на полном ходу врезаемся в одно из жесточайших табу, установленных наукой XX века. Послушаем, что говорит Жак Моно (1970), первосвященник научной рациональности, в своей книге «Случайность и необходимость»:
Всякое смешение знания с ценностями незаконно и недопустимо.
Моно — один из основателей молекулярной биологии. Страшно подпадать под его анафему. И все же я рискну с ним поспорить и других постараюсь подвигнуть на то же самое. Табу на смешение знания с ценностями пришло к нам из XIX века, из великой битвы между биологами–эволюционистами во главе с Томасом Гексли и церковниками под предводительством епископа Уилберфорса. Гексли битву выиграл, но и сто лет спустя Моно и Уэйнберг все еще сражались с призраком епископа Уилберфорса. В наше время у физиков нет причин опасаться этого призрака. Если анализ отдаленного будущего приведет нас к вопросам, связанным с темами конечного смысла и цели жизни — давайте исследовать эти вопросы смело и без стеснения. И что за беда, если наши ответы на эти вопросы окажутся наивными и незрелыми? Значит, наука по–прежнему жива — и ей есть куда двигаться.
В этих лекциях я постараюсь исследовать будущее так же, как Уэйнберг в своей книге исследовал прошлое. Мои высказывания будут просты, даже примитивны, но неизменно подкреплены цифрами. Моя цель — установить количественные параметры судьбы вселенной. Извиняться за то, что смешиваю философские рассуждения с математическими уравнениями, я не собираюсь.
Две простейшие космологические модели (Weinberg, 1972) описывают универсальную вселенную с нулевым давлением, открытую или закрытую. Геометрия закрытой вселенной описывается уравнением
ds 2= R 2[d 2— d 2— sin 2d 2], (1)
где — пространственная координата, движущаяся вместе с материей, — временная координата, связанная с физическим временем t по формуле:
t = Т 0( — sin), (2)
a R — радиус вселенной, заданный по формуле:
R = сТ 0(1 — cos), (3)