Дао физики
Шрифт:
Поскольку геометрия рассматривалась в качестве божественного откровения, нет ничего странного в том, что греки считали, что небеса имеют правильную геометрическую форму. Это означало, что небесные тела движутся по окружностям. Для того, чтобы сделать картину еще более геометричной, считалось, что каждое из них закреплено на концентрической хрустальной сфере. Сферы должны были двигаться как единое целое, и в центре этого движения находилась Земля. В последующее время греческая геометрия продолжала оказывать влияние на западную философию и науку. До начала нашего века «Элементы» Евклида использовались в европейских школах в качестве учебника, и на протяжении более чем двух тысячелетий считалось, что евклидова геометрия отражает истинную сущность пространства. Для того, чтобы заставить ученых и философов признать, что законы геометрии не присущи природе изначально, а обязаны формулированием человеку, нужен был «целый» Эйнштейн. По словам Генри Маргенау, «Основное открытие теории относительности заключается в том, что геометрия... — продукт
В отличие от греческой, восточная философия всегда утверждала, что пространство и время — порождение ума. Восточные мистики относятся к ним точно так же, как ко всем интеллектуальным понятиям — как к относительным, ограниченным и иллюзорным. Так, в одном из буддийских сочинений говорится: «О монахи, Будда учил, что... прошлое, будущее, физическое пространство... и личность, все это — лишь имена, формы мышления, об щеупотребительные слова, попросту искусственная, вымышленная действительность» [59,198].
Поэтому на Дальнем Востоке геометрии не было суждено приобрести такой вес, как в древней Греции, что, впрочем, не означает, что индийцы и китайцы не имели о ней никакого представления. Они использовали ее при строительстве храмов совершенных геометрических форм, измеряя землю и составляя карту звездного неба, но не для того, чтобы выражать в геометрической форме вечные абстрактные истины. Да и древняя восточная наука не считала нужным вместить все явления природы в жесткую схему из прямых линий и окружностей. Слова Джозефа Нидэма о китайской астрономии представляют собой интерес в этом отношении: «Китайцы-астрономы не считают нужным объяснять явления геометрически: по их мне нию, все организмы, составляющие всеобщий организм, следуют своему Дао в соответствии со своей природой, а их движения могут быть описаны в терминах „непоказательной“, по своей сущности, алгебры. Таким образом, китайцам было не знакомо такое отношение к окружности, которое бытовало в Европе, как и средневековая тюрьма хрустальных сфер» [60, 458].
Итак, древние восточные философы и ученые считали, что геометрические построения не являются абсолютными и неизменными характеристиками природы, будучи продуктом деятельности рассудка. Теория относительности исходила из такого же представления о геометрии. По словам Ашвагхоши, «Да будет известно всем, что понятие пространства — лишь одно из порождений разграничивающего сознания, что за ним не стоит никакой реальности... Пространство существует только по отношению к нашему разграничивающему сознанию» [2,107].
То же самое можно сказать о понятии времени. Восточные мистики считают, что эти понятия — понятия пространства и времени — привязаны к определенным состояниям сознания. Медитация позволяла им выйти за пределы обычного состояния и осознать, что условные и относительные представления о пространстве и времени не представляют собой высшей истины. Новые, более совершенные понятия пространства и времени, которые возникают в результате мистического опыта, во многом напоминают понятия, которыми оперирует современная физика, и в частности, теория относительности.
Как же теория относительности описывает пространство и время? В чем новизна ее подхода? Она исходит из того факта, что все измерения в пространстве и времени относительны. Конечно, об относительности пространственных координат было известно и раньше. Задолго до Эйнштейна люди поняли, что положение любого объекта в пространстве может быть определено только по отношению к какому-либо другому объекту. Это обычно делается при помощи трех координат и точки отсчета, которую мы можем назвать «положение наблюдателя».
Для того, чтобы доказать относительность такой системы координат на конкретном примере, возьмем двух наблюдателей, удобно расположившихся в воздушном пространстве и созерцающих зонтик (рис. 16). Для наблюдателя А картина выглядит следующим образом: зонтик находится слева от него в слегка наклоненном положении, так что ближе к нему его верхний конец. С другой стороны, наблюдатель В видит зонтик справа от себя, и дальше от него расположен верхний конец. Если мы распространим заключение, сделанное на основе примера с двумя измерениями, на трехмерное пространство, мы увидим, как «слева», «справа», «наверху», «внизу», «под наклоном» и т. д., — определяются положением наблюдателя в пространстве, а значит, являются относительными. Однако со временем в классической физике было совершенно другое положение. Считалось, что последовательность событий во времени не зависит от конкретных наблюдателей. Такие временные понятия, как «до», «после» или «одновременно», рассматривались имеющими абсолютное значение, не зависящее от какой-либо системы координат.
Эйнштейн обнаружил, что все временные характеристики тоже относительны и зависят от конкретного наблюдателя. В повседневной жизни мы привыкли думать, что последовательность событий носит универсальный характер. Это убеждение порождено тем, что скорость света в сравнении с любой другой знакомой нам скоростью чрезвычайно высока,
Относительность времени тоже заставляет нас отказаться от ньютоновского абсолютного пространства. Считалось, что это пространство в каждый определенный момент содержит каким-то определенным образом распределенную материю; однако сейчас мы знаем, что нет абсолютного времени, что какой-либо момент времени может быть определен только для одного наблюдателя в какой-то определенный момент, однако для остальных наблюдателей оно может произойти раньше или позже этого момента. Поэтому мы не можем говорить о «Вселенной в некоторый момент» в абсолютном смысле, и абсолютного пространства, существующего независимо от наблюдателя, тоже не может быть. Так, теория относительности показала, что все изменения в пространстве и времени утрачивают абсолютное значение, и заставила нас отказаться от классических понятий пространства и времени. Исключительное значение этого открытия раскрыто в следующих словах Менделя Закса: «Истинно революционное содержание теории Эйнштейна в том, что... она отрицает объективный характер пространственно-временной системы координат. Теория относительности утверждает, что пространственные и временные координаты — лишь элементы языка, которым пользуется наблюдатель, описывающий окру жающую среду» [66,53].
Это явление, сделанное современным физиком, обнаруживает близкое сходство представлений о времени и пространстве, которые, как уже говорилось выше, считают, что пространство и время — «всего лишь имена, формы мышления, общеупотребительные слова». Поскольку вследствие этого пространству и времени отводится лишь субъективная роль элементов языка, которым тот или иной наблюдатель пользуется при описании явлений природы, каждый наблюдатель будет описывать явления по-своему. Для того, чтобы вывести на основании их описания универсальные законы природы, им придется сформулировать эти законы таким образом, чтобы они имели одну и ту же форму во всех системах координат, то есть для всех наблюдателей в относительном движении. Это требование, известное как принцип относительности, послужило отправной точкой для всей теории относительности. Интересно, что в шестнадцать лет Эйнштейн осознал существование парадокса, который в зародыше содержал в себе теорию относительности. Он попытался представить себе, каким бы увидел луч света наблюдатель, передвигающийся в направлении луча со скоростью света, и пришел к выводу о том, что этот наблюдатель увидел бы электромагнитное поле, колеблющееся назад и вперед, не продвигаясь в каком-либо направлении, то есть не образуя волны. Эйнштейн понял, что то, что будет хорошо известным электромагнитным явлением для одного наблюдателя, для другого окажется явлением, которое противоречит законам физики, и не мог понять этого. На склоне лет Эйнштейн осознал, что принцип относительности можно удовлетворительно применять в описании электромагнитных явлений только тогда, когда все пространственные и временные составляющие относительны. Законы механики, которые управляют явлениями, связанными с движением тел, и законы электродинамики, теории электричества и магнетизма можно сформулировать в общепринятых «относительных» рамках, которые включают время в свои трехмерные координаты в качестве четвертой координаты, рассматриваемой наблюдателем как относительной. Для того, чтобы проверить, удовлетворяет ли описание принципу относительности, то есть выглядят ли уравнения теории одинаково во всех системах координат, нужно провести все обозначения пространственного и временного положения из одной системы координат в другую. Такие операции перевода, или трансформации, были хорошо известны и широко использовались в классической физике. На рис. 16 мы видим, что каждая из двухкоординат наблюдателя А (одна горизонтальная и одна вертикальная, как обозначают линии со стрелками) представлена в виде суммы двух координат наблюдателя В, и наоборот. Элементарная геометрия позволяет вычислить точные соотношения координат двух наблюдателей.