Дарвинизм в XXI веке
Шрифт:
Вейсман действительно поставил такой опыт. Но он мог и не утруждаться: многие породы собак подвергались обрезке ушей и хвостов в куда более длинном ряду поколений – с тем же результатом. Еще более масштабный эксперимент природа поставила над самим человеческим родом – точнее, над его прекрасной половиной. Всякая женщина рождается с девственной плевой. Если ей вообще суждено кого-то родить, то только после разрушения этой структуры. Но этот признак, уничтожаемый в каждом поколении, упрямо воспроизводится в следующем на протяжении всей известной нам истории человечества. Где же оно, пресловутое “наследование приобретенных признаков”?
На
К концу XIX века представления о возможности наследования приобретенных признаков по-прежнему преобладали, но уже не казались само собой разумеющимися: спор двух концепций был перенесен на поле эксперимента. Поисками заветного феномена азартно занялось множество ученых в разных странах мира. Они использовали разные объекты и разные признаки, но схема их работ обычно была одной и той же: берем некий фактор, воздействуем им на подопытные организмы (желательно на молодые, еще не закончившие свое формирование, а еще лучше – на семена, проростки, икру, личинок и тому подобные стадии) и убеждаемся, что их индивидуальные признаки смещаются в ту же сторону, в какую под действием данного фактора эволюционировали близкие им виды в природе.
Например, целая школа французских ботаников во главе с Гастоном Боннье много лет проводила опыты с переносом десятков видов растений с равнин в альпийские условия – исправно убеждаясь, что уже в первом поколении черты таких растений изменяются в сторону родственных им горных видов. Русский ученый Владимир Шманкевич, увеличивая концентрацию соли в воде, где развивались личинки рачка Artemia salina (хорошо знакомого аквариумистам в качестве корма для рыбок), демонстрировал, что у выросших в таких условиях рачков форма хвостового членика и число щетинок на хвосте соответствовали аналогичным признакам вида A. muhlhausenii, в природе живущего в более соленой воде. Если же вовсе убрать из воды соль, A. salina приобретал сходство (правда, по другим признакам) с пресноводным рачком Branchipus stagnalis. Другие ученые столь же убедительно показывали, что мыши, с рождения содержавшиеся на холоде, имели более короткие уши и хвосты, чем те, что росли в тепле, – что полностью соответствует биогеографическому правилу Аллена о различиях между южными и северными формами одного вида. Или что у головастиков, которых растили на мясной пище, кишечник оказывался короче, чем у головастиков того же вида, питавшихся растениями (как известно, для переваривания растительной пищи требуется более длинный кишечник). Работ такого рода было опубликовано множество, но все они ровным счетом ничего не доказывали: с таким же успехом существование хамелеона можно было бы считать доказательством того, что наши обычные ящерицы когда-то умели менять цвет покровов по своему усмотрению.
Кроме того, эти опыты имели и еще одну общую слабость: в них было очень трудно отделить то, что организм унаследовал, от того, что самостоятельно приобрел в ходе собственной жизни. Допустим, мы вслед за Боннье и его сотрудниками пересадили сеянец хлопушки [82] с равнины на высоту две с лишним тысячи метров, и она выросла мелкой и суховатой, как родственный горный вид. Мы собрали с нее семена и высадили… где? Если в горах – то да, из них вырастут мелкие и жесткие растения. Но как узнать, унаследовали ли они эти качества от “натурализовавшихся” в горах родителей или самостоятельно адаптировались к горному климату – так же, как это сделали их родители? Если же мы высадим их на равнине, из них вырастут обычные кустики хлопушки. И опять непонятно: то ли они не унаследовали родительских адаптаций – то ли успели адаптироваться обратно, к исходному состоянию?
82
Хлопушка (Silene inflata) – травянистое растение семейства гвоздичных, нередко встречается на пустырях и огородах в качестве сорняка.
В первые годы ХХ века появилась – и тут же стала чрезвычайно модной – генетика. Это заметно ослабило позиции ламаркизма: существование каких-то автономных носителей наследственных качеств плохо увязывалось с представлением о неограниченной пластичности организма по отношению к факторам внешней среды. Вдобавок загадочные гены вели себя так, как будто никаких внешних воздействий нет вовсе.
Идея наследования приобретенных признаков по-прежнему насчитывала немало именитых сторонников (правда, и решительных противников теперь было не меньше – в основном из числа новоявленных генетиков), но она все меньше привлекала научную молодежь. Тем временем успехи экспериментальной биологии сделали возможной пересадку половых желез от одного животного другому с последующим получением от таких животных потомства. Подобные опыты были проделаны на морских свинках, курах, шелкопряде – и ни в одном из них не было найдено никаких следов влияния организма-реципиента на донорские половые клетки: развившиеся из них особи несли признаки только животного-донора. Это выглядело куда убедительней вознесенных в горы растений и подсоленных рачков. И хотя в 1907 году директор берлинского Анатомического и биологического института Оскар Гертвиг предрекал, что в конце концов именно ламарковский эволюционный механизм окажется верным, звезда еще недавно общепринятой теории явно клонилась к закату. Однако даже к середине 1920-х годов ламаркизм все еще оставался респектабельной научной гипотезой.
Продолжались и попытки найти-таки заветный эффект – по своей длительности, массовости и настойчивости сравнимые уже разве что с поисками философского камня. Искали ученые-одиночки и целые научные школы, искали корифеи и дилетанты, искали разными методами и на разных объектах. В истории этой погони за призраком случалисьи настоящие трагедии [83] .
Одна из последних широко известных попыток доказать наследование приобретенных признаков косвенно связана с именем знаменитого русского физиолога Ивана Павлова. В 1924 году один из его сотрудников – Николай Студенцов опубликовал результаты оригинального исследования: он вырабатывал у мышей условные рефлексы, скрещивал обученных мышей между собой и обучал их потомство. И выходило, что каждому поколению мышей для выработки рефлекса требовалось меньше сочетаний стимула и подкрепления, чем предыдущему. Этот результат трудно было истолковать иначе, нежели “по Ламарку”. Комментируя работу Студенцова, Павлов предположил, что таким манером условный рефлекс может в конце концов стать безусловным.
83
Так, например, в 1926 году известный австрийский биолог, страстный приверженец неоламаркизма Пауль Каммерер покончил с собой после того, как в журнале Nature вышла статья американского герпетолога Глэдвина Нобла, исследовавшего представленный Каммерером препарат и обнаружившего, что “унаследованные приобретенные признаки” явно фальсифицированы.
Однако после резких возражений видных генетиков (прежде всего Николая Кольцова) Павлов, известный своей придирчивостью к достоверности результатов, поручил другому сотруднику, Евгению Ганике, повторить опыты Студенцова, по возможности исключив альтернативные объяснения. Ганике сконструировал специальную установку, в которой мыши обучались автоматически, без участия экспериментатора. И “эффект Студенцова” как рукой сняло – мышам с 25 поколениями ученых предков на выработку навыка требовалось столько же времени, сколько мышам, предков которых ничему не учили. (Скорее всего, полученные Студенцовым результаты объяснялись тем, что в эксперименте обучались не только мыши, но и сам молодой исследователь – это была его первая самостоятельная работа.) После этого Павлов публично попросил не причислять его в дальнейшем к авторам, признающим наследование приобретенных признаков.
К началу второй трети ХХ века ламаркизм вынужден был оставить основные поля эволюционных битв – зоологию и ботанику, – но все еще держался в микробиологии. Стремительная адаптация микроорганизмов чуть ли не к любым воздействиям плохо совмещалась с образом медленной дарвиновской эволюции, невольно наталкивая на мысль, что уж микробы-то точно приспосабливаются “по Ламарку”. Поиски “направленных мутаций” надолго прервались только после знаменитого опыта Макса Дельбрюка и Сальвадора Лурии, поставленного в 1943 году и вошедшего в историю науки под именем “флуктуационный тест”.
Объектом их эксперимента была кишечная палочка Escherichia coli, а фактором, к которому ей надлежало приспособиться, – фаг (то есть паразитирующий на бактерии вирус) Т1. В норме фаг цепляется к поверхности бактериальной клетки, впрыскивает внутрь нее свою ДНК, та встраивается в геном хозяина и многократно копируется, одновременно заставляя зараженную клетку в лихорадочном темпе синтезировать вирусные белки. В конце концов клетка погибает и лопается, и в среду вываливается множество новеньких, готовых к заражению фаговых частиц. Процесс развивается лавинообразно, но, если бактерий достаточно много, рано или поздно среди них находится клетка, невосприимчивая к фагу. Биохимические механизмы устойчивости могут быть разными, но результат один: резистентная клетка преспокойно растет и размножается на питательной среде с фагом, образуя на поверхности различимую невооруженным глазом колонию.