Чтение онлайн

на главную

Жанры

Десять великих идей науки. Как устроен наш мир.
Шрифт:

Сначала рассмотрим митоз, копирование соматических клеток. Жизнь клетки циклична, и лишь около десяти процентов ее времени отведено митозу. Остальное время, однако, критически важно, поскольку на его протяжении приготовляются многие вещества, которые будут использованы в акте копирования. Большую часть этого лежащего под паром, но плодородного, времени все двадцать три пары наших хромосом вытягиваются и сложным образом распределяются по ядру клетки. При наступлении митоза (рис. 2.2) хромосомы стягиваются в спирали, становясь более подготовленными к движению в разных направлениях. На этой стадии становится также видно, что каждая хромосома уже подверглась копированию, поскольку она уже состоит из двух идентичных стержнеподобных единиц, называемых хроматидами, соединенных вместе областями, называемыми центромериями, принимая облик, похожий на вытянутое X. Затем оболочка ядра расходится, и компоненты ядра вместе с окружающей цитоплазмой, сложной смесью составов и структур, находящихся внутри стенок

клетки, но вне ядра, сливаются в одно. Хроматиды теперь растаскиваются в стороны, и между двумя отрядами хромосом (которыми мы теперь считаем разделившиеся хроматиды) начинает формироваться клеточная мембрана, новая мембрана ядра начинает возникать вокруг каждой копии, спирали хромосом разворачиваются, и мы получаем уже две идентичных клетки вместо одной.

Рис. 2.2.Процесс митоза, деление соматической клетки на две копии. Первоначально хромосомы распределены по всему ядру (изображаемому здесь в виде внутренней сферы). Когда деление начинается, хромосомы свертываются в спирали, удваиваются и образуют протяженные объекты в форме буквы X (здесь мы показываем лишь два из них; в клетке человека имеются двадцать три таких пары), состоящие из двух хроматид, соединенных центромериями. Хромосомы располагаются в линию на центральной плоскости, мембрана ядра разжижается, хромосомы разделяются и по отдельности выталкиваются в цитоплазму клетки. Затем мембрана ядра преобразуется, а мембрана клетки начинает закрываться вокруг каждого из новых ядер. Наконец, хромосомы раскручиваются, и мы получаем две идентичные диплоидные клетки (клетки со спаренными хромосомами) там, где первоначально была одна.

Теперь рассмотрим мейоз, образование гамет. Этот процесс гораздо более тонок, чем митоз, поскольку конечным выходом в нем должно быть формирование четырех клеток, каждая с одной половиной от пары хромосом (которых у человека двадцать три). Этот процесс является довольно сложным, поэтому давайте проследим его шаги на рис. 2.3, где мы сосредоточились на паре хромосом. Первоначально хромосомы сплетены вместе и заполняют ядро, но при начале мейоза они расплетаются и сжимаются. На этой стадии через микроскоп становится видно, что каждая хромосома удвоилась и состоит из двух хроматид, соединенных центромериями в форме обычного вытянутого X, в точности как при митозе. Теперь, однако, пара материнских и пара отцовских хроматид движутся вместе и формируют продолговатый объект, похожий на две стороны застежки-молнии. Каждая хромосома прикрепляется к оболочке ядра своими концами, которые называются теломерами(«удаленными частями»); такая постановка на якорь, возможно, помогает одной стороне «молнии» найти своего партнера. Пока две удвоенные хромосомы лежат вместе, вещество в хроматиде, представляющей отцовскую составляющую, заменяется на вещество соответствующей области хроматиды, предоставленной матерью. Это мгновение, когда в организме происходит генетическое изменение.

Рис. 2.3.Процесс мейоза, образования гамет. Стратегией мейоза является превращение диплоидной клетки в четыре гаплоидных клетки (клетки с одиночными версиями хромосом) и создание генетической композиции родительских хромосом. Мы снова показываем лишь одну пару хромосом в родительской клетке. Первоначально две хромосомы распределены по всему ядру. Однако, когда начинается мейоз, они свертываются в спирали и удваиваются, чтобы образовать две пары соединенных между собой хроматид, так же как при митозе. Однако соответствующие пары сопряженных хроматид перемещаются вместе и, находясь по соседству, обмениваются генетическим материалом. Затем они мигрируют к центральной плоскости, где происходит первое деление, подобное происходящему при митозе (в деталях мы его не показываем) и дающее в результате две клетки с двумя хромосомами в каждой. Затем следует второе митотическое деление, в котором две хромосомы каждого ядра разделяются снова. Процесс оканчивается появлением четырех гаплоидных клеток, каждая из которых содержит хромосому, представляющую собой генетическую смесь двух хромосом клеток родителей. Воспроизведение теперь, на понятийном уровне, но не механистически, является обращением мейоза, в котором одна хромосома в гамете, предоставленной одним из родителей, соединяется с другой хромосомой, предоставленной другим родителем.

После этого временного затора в истории организма, процесса кроссинговера(взаимного обмена между парами хромосом), две пары гибридных хромосом растаскиваются по двум областям — что довольно похоже на митоз, — чтобы образовать две клетки, каждая из которых содержит пару хроматид. Это «первое митотическое деление» на иллюстрации. Затем во «втором митотическом делении» каждая из пар хроматид растаскивается на индивидуальные хромосомы, которые теперь занимают индивидуальные клетки. В этой конечной точке процесса у нас оказалось четыре клетки там, где была одна, а исходный генетический материал от обоих родителей распределился по всем четырем клеткам. Хромосомы одной из этих клеток могут содержать доминантный аллель Yгена желтого гороха; в другой может находиться рецессивный аллель yзеленого гороха. Арифметика Менделя уже почти готова войти в его сад. Обратим здесь внимание на еще одну

грань науки: за простотой арифметических наблюдений может лежать огромной глубины сложность, в нашем случае сложность биологической клетки.

Теперь пришло время развернуть хромосому. Что на самом деле является веществом наследственности? Каково физическое воплощение генетической информации?

Мысль о том, что наследуемая информация кодируется химически, возникала уже в девятнадцатом веке, ибо где же еще ей в конце концов находиться? Примерно с 1902 г. и была принята точка зрения, что белки представляют собой нитеподобные молекулы (обычно свернутые в шарики), построенные из набора примерно двадцати аминокислот в определенной последовательности (подробнее об этом мы скажем ниже), и возник всеобщий энтузиазм по поводу идеи о том, что генетическая информация закодирована в белках, и различные последовательности аминокислот передают различные послания от одного поколения другому. Удивляло, однако, загадочное присутствие в клеточных ядрах молекул другого типа, названного, чтобы отметить его происхождение из ядра, «нуклеиновой кислотой». Они состоят из нитей, в которые входят единицы другого типа, о них речь пойдет позже. Эти нуклеиновые кислоты находили скучными и структурно слишком простыми для того, чтобы переносить огромное количество информации, содержащейся в хромосомах. Было широко распространено предположение, что они просто входят в структуру клетки, подобно тому как целлюлоза входит в структуру растений.

Эту точку зрения пришлось переменить в 1944 г. Биохимик, игравший на корнет-а-пистоне, Освальд Эвери (1877-1955), родившийся в семье британских иммигрантов в Новой Шотландии (Канада), но сделавший свою основополагающую работу в Соединенных Штатах, исследовал различные типы пневмококков, находящихся в полости рта у пациентов, больных пневмонией, и у здоровых людей. С 1923 г. было известно, что пневмококки (бактерии, вызывающие пневмонию) появляются в нескольких разновидностях: невирулентные (незаразные) формы выглядят неровными, в то время как вирулентные штаммы выглядят гладкими. Фредерик Гриффите (1879-1941), работавший в Министерстве здравоохранения в Лондоне над Streptococcus pneumoniae, показал, что неровные и гладкие формы могут быть превращены друг в друга. Эвери и его коллеги принялись за работу в 1930 г. и вскоре обнаружили, что трансформация одного типа бактерий в другой может быть получена в экстракте из клеток и что «источник трансформации», являющийся ее эффективным агентом, может быть выделен. Эвери затем сосредоточил усилия на выяснении природы источника трансформации. Он обнаружил, что протеаза, которая является ферментом, дезактивирующим белки, не влияет на активность источника, так что источник не является белком. Он обнаружил также, что липаза, которая является ферментом, разрушающим липиды, жировые субстанции, составляющие стенки клетки, также не дает эффекта, поэтому источник не является липидом. Выяснив, какие вещества не являются источником трансформации, Эвери продолжил серию опытов, и они показали, что источником была старая, скучная нуклеиновая кислота. Это смешало все карты, и нуклеиновые кислоты встали на путь карьерного роста, как Кларк Кент на путь Супермена, чтобы вдруг оказаться самыми интересными и важными молекулами в мире.

Не всех удалось убедить. Некоторые очень привязались к белковой теории наследования и настаивали в своих публикациях, что источником трансформации является, возможно, еще не выявленный белок, ассоциированный с нуклеиновой кислотой. Эта точка зрения была решительно отвергнута в последующие несколько лет. В 1952 г. Альфред Херши (1908-97) и его ассистент, студентка последнего курса Марта Чейз обнародовали результаты своих опытов на бактериофагах, вирусах инфицирующих бактерий. Они обнаружили, что элементарный фосфор присутствует в нуклеиновых кислотах, но отсутствует в белках, а сера присутствует в белках, но отсутствует в нуклеиновых кислотах. Затем, используя радиоактивные версии каждого элемента, они проследили их путь и показали, что в процессе инфицирования в клетку бактерии попадает только нуклеиновая кислота фага, а не его белок. Этот эксперимент убедил научный мир в том, что наследуемая информация закодирована в нуклеиновой кислоте.

Тем временем был достигнут прогресс в изучении структуры одной из нуклеиновых кислот, дезоксирибонуклеиновой кислоты(ДНК). Это соединение было обнаружено в 1868 г. шведским врачом Фредериком Мишером в немецком городе Тюбингене в клетках из пропитанных гноем повязок, снятых с раненых солдат. Гной представляет собой в основном скопление белых кровяных телец, которые накапливаются для борьбы с инфекцией; хотя красные кровяные тельца млекопитающих не имеют ядер, у белых они есть, и они явились источником нуклеиновых кислот.

Чтобы понять все, что за этим последовало, нам нужно кое-что узнать о химическом устройстве ДНК. Лучше всего сделать это, разложив на части ее полное наименование, дезоксирибонуклеиновая кислота. Эта молекула подобна длинной нити, к которой регулярно по всей ее длине прикреплены другие молекулы. Сама нить построена попеременно из молекул сахара и фосфатных групп. Молекулой сахара является рибоза, близкая родственница глюкозы, из которой удален один атом кислорода (отсюда части «дезокси» и «рибо» в названии). Как можно видеть на рис. 2.4, рибоза состоит из простого кольца, содержащего четыре атома углерода и один атом кислорода, и всяких кусочков, прикрепленных к кольцу. Фосфатные группы, связывающие вместе кольца дезоксирибозы состоят из атома фосфора (вспомним опыты Херши), к которому прикреплены четыре атома кислорода. Позвоночником для ДНК служит чередование фосфатных и дезоксирибозных групп, достигающее сотен и тысяч повторений, подобное хрупкой жемчужной нити.

Поделиться:
Популярные книги

Дайте поспать! Том III

Матисов Павел
3. Вечный Сон
Фантастика:
фэнтези
5.00
рейтинг книги
Дайте поспать! Том III

Путь Чести

Щукин Иван
3. Жизни Архимага
Фантастика:
фэнтези
боевая фантастика
6.43
рейтинг книги
Путь Чести

Энфис 2

Кронос Александр
2. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 2

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Книга пяти колец. Том 3

Зайцев Константин
3. Книга пяти колец
Фантастика:
фэнтези
попаданцы
аниме
5.75
рейтинг книги
Книга пяти колец. Том 3

Диверсант

Вайс Александр
2. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Диверсант

Ученичество. Книга 2

Понарошку Евгений
2. Государственный маг
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ученичество. Книга 2

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Последний попаданец 9

Зубов Константин
9. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 9

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Неестественный отбор.Трилогия

Грант Эдгар
Неестественный отбор
Детективы:
триллеры
6.40
рейтинг книги
Неестественный отбор.Трилогия

Хозяйка дома на холме

Скор Элен
1. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка дома на холме

Гром над Академией. Часть 2

Машуков Тимур
3. Гром над миром
Фантастика:
боевая фантастика
5.50
рейтинг книги
Гром над Академией. Часть 2