Диагностика и быстрый ремонт неисправностей легкового автомобиля
Шрифт:
Однако стоит иметь в виду, что для начала следующего процесса (например, впуска) не обязательно должен быть полностью завершен предшествующий процесс (например, выпуск).
Подобное положение, когда открытыми оказываются одновременно оба клапана (впускной и выпускной), называется перекрытием клапанов. Более того, такое положение бывает специально предусмотрено и может служить для лучшего наполнения цилиндров горючей смесью и лучшей очистки цилиндров от отработанных газов.
К преимуществам четырехтактного двигателя можно отнести следующие характеристики: большой ресурс, большая (по сравнению с другими двигателями) экономичность, более чистый выхлоп, меньший шум, к тому же не требуется выхлопная система.
Принцип работы двухтактного двигателя
В отличие от четырехтактного двигателя рабочий цикл двухтактного происходит в течение
Из четырех тактов предыдущего двигателя в данном случае присутствуют только два – сжатие и расширение. Два других цикла – впуск и выпуск – заменены в таком двигателе процессом продувки цилиндра вблизи НМТ поршня. В этот момент свежая струя рабочей смеси вытесняет отработанные газы из цилиндра.
Если остановиться на этом подробнее, то рабочий цикл двухтактного двигателя выглядит следующим образом.
В то время когда поршень двигается вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно с этим поршень, движущийся вверх, создает разрежение в кривошипной камере (рис. 15).
Рисунок 15. Двухтактный двигатель: 1 – выпускной клапан; 2 – форсунка; 3 – продувочный насос; 4 – продувочные (впускные) окна
Под воздействием создаваемого разрежения клапан впускного коллектора открывается и свежая порция топливовоздушной смеси (обычно с добавлением масла) засасывается в кривошипную камеру.
В ходе движения поршня вниз повышается давление в кривошипной камере и клапан закрывается. Сам же процесс сгорания и расширения рабочей смеси происходит точно так же, как и в четырехтактном двигателе. Однако в момент движения поршня вниз открывается так называемое впускное окно (т. е. поршень перестает перекрывать его). Через это окно выхлопные газы, все еще находящиеся под большим давлением, устремляются в выпускной коллектор. Через некоторое время таким же образом поршень открывает впускное окно, которое расположено со стороны впускного коллек тора.
В это время свежая смесь выталкивается из кривошипной камеры идущим вниз поршнем и попадает в рабочую камеру двигателя, где окончательно вытесняет отработанные газы. Часть рабочей смеси при этом выбрасывается в выпускной коллектор. Во время движения поршня вверх часть свежей смеси, которая была вытолкнута из выпускного коллектора, засасывается обратно в кривошипную камеру.
При одинаковом объеме цилиндра двухтактный двигатель должен иметь почти в два раза большую мощность, чем четырехтактный. Однако это потенциальное преимущество далеко не всегда возможно полностью реализовать. Прежде всего это затрудняется недостаточной эффективностью продувки по сравнению с нормальным впуском и выпуском. Но все-таки при одинаковом литраже двухтактный двигатель мощнее в 1,5 или 1,8 раза.
Неотъемлемое преимущество двухтактного двигателя перед четырехтактным заключается в его компактных габаритах из-за отсутствия громоздкой системы клапанов и распределительного вала. К преимуществам двухтактного двигателя можно также отнести отсутствие громоздких систем смазки и газораспределения, большую мощность в пересчете на 1 л рабочего объема, простоту и дешевизну изготовления.
Карбюраторные и инжекторные двигатели
Разница между карбюраторными и инжекторными двигателями заключается прежде всего в системе приготовления рабочей смеси и впрыска топлива.
В карбюраторных двигателях приготовление рабочей смеси происходит в карбюраторе.
В двигателях инжекторного типа впрыск топлива в воздушный поток осуществляется с помощью специальных форсунок. Топливо подается к форсункам под давлением, дозирование же осуществляется с помощью электронного блока управления (подачей импульса тока).
Карбюраторные двигатели представляют собой, можно сказать, вариант, предшествующий инжекторным. Прямой последовательности в данном случае нет, так как один не является технологически новым поколением двигателей, продолжающим предыдущее поколение. Дело в том, что переход к инжекторному устройству связан в основном с новыми требованиями к чистоте выхлопа (выхлопным газам) и с установкой современных нейтрализаторов выхлопных газов – каталитических конвертеров, или просто катализаторов. Постоянство состава выхлопных газов, идущих в катализатор, обеспечивается системой впрыска топлива, контролируемой программой впрыска топлива. В связи с тем что современный катализатор может работать исключительно в узком диапазоне рабочего состава топлива и требует строго определенного содержания кислорода, необходимо обязательное наличие такого важного элемента, как лямбда-зонд, известного еще как кислородный датчик. Система управления с помощью лямбда-зонда постоянно анализирует содержание кислорода в выхлопных газах и поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива и оксидов азота. При этом регулярно поддерживается именно такое соотношение, которое способно обезвредить катализатор. Сложность устройства и его задача-максимум состоят в том, что современный катализатор вынужден не просто окислять не сгоревшие полностью в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота. Кроме того, желательно еще раз окончательно окислять весь поток газов. Однако необходимого результата можно добиться лишь в пределах так называемого «каталитического окна». Учитывая то, что одной из самых сложных задач является удержание нормативов по оксидам азота, необходимо снижать интенсивность их синтеза в камере сгорания.
«Каталитическое окно» – узкий диапазон соотношения топлива и воздуха, когда катализатор способен выполнять свои функции.
Этого можно достигнуть преимущественно с помощью понижения температуры процесса горения путем добавления определенного количества выхлопных газов в камеру сгорания при некоторых критических режимах.
Система зажигания
Система зажигания является основной вспомогательной системой бензинового двигателя. Она призвана обеспечивать детонацию горючей смеси в необходимый момент. Системы зажигания бывают различного типа – контактные, бесконтактные или микропроцессорные. Бесконтактная принципиально отличается от контактной лишь тем, что у нее вместо прерывателя стоит индукционный датчик. У микропроцессорной системы отличий несколько больше: она управляется специальным блоком-компьютером и включает в себя такие элементы, как датчик положения коленчатого вала, блок управления зажиганием, коммутатор, катушки, свечи и датчик температуры двигателя. В инжекторных двигателях система зажигания дополнительно оснащается датчиком положения дроссельной заслонки и датчиком массового расхода воздуха.
Дизельный двигатель
История изобретения
В первую очередь стоит сказать о происхождении самого названия двигателя – «дизельный». Им он обязан своему изобретателю – Рудольфу Дизелю, который в 1890 г. разработал теорию «экономичного термичного двигателя». Уже вскоре теория была воплощена на практике, и 23 февраля 1893 г. Рудольф Дизель получил патент на свое изобретение. Однако путь к изобретению, которое вошло в историю человечества как самый настоящий «двигатель прогресса», был весьма тернист и многотруден. Интересно, что сначала изобретатель выдвигал в качестве идеального топлива каменноугольную пыль. Но сама практика вскоре продемонстрировала невозможность использования такого вида топлива прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, образующейся при ее сгорании. Кроме того, возникали большие проблемы с подачей пыли в цилиндр. Работа все-таки не прошла даром, так как был получен важнейший опыт использования в качестве топлива тяжелых нефтяных фракций. Здесь самое время упомянуть, что, хотя Рудольф Дизель и был первым, кто запатентовал двигатель с воспламенением от сжатия, все-таки были и другие изобретатели, работавшие в том же направлении. Еще раньше Дизеля изобретатель Экройд Стюарт высказал одну интересную мысль: он предложил такую схему двигателя, при которой воздух втягивался в цилиндр, сжимался, а затем (в конце цикла сжатия) нагнетался в емкость, в которую впрыскивалось топливо. Для запуска двигателя емкость нагревалась снаружи лампой, а после запуска его самостоятельная работа поддерживалась без подвода тепла извне.
Экройд Стюарт просто экспериментировал с возможностями исключения из двигателя свечей зажигания, не рассматривая при этом особенности работы от высокой степени сжатия, т. е. не обращал внимание на самое большое преимущество – топливную эффективность. Судя по всему, это и явилось причиной того, что повсеместно стали использоваться термины «двигатель Дизеля», «дизельный двигатель» или просто «дизель», ведь именно теория Рудольфа Дизеля стала базовой для создания тех самых современных двигателей с воспламенением от сжатия, которые используются сегодня в огромном количестве.