Диссертация рассеянного магистра
Шрифт:
4*100 + 2*10 + 5 = 425.
А если вспомнить, что 100 равно десяти в квадрате, десять равно десяти в первой степени и, наконец, единица равна десяти в нулевой степени (ведь всякое число в нулевой степени равно единице), то число 425 может быть записано итак:
4*102 + 2*101 + 5*10 = 425.
Точно так же записываются числа в двоичной системе, только место десятков здесь занимают двойки в тех же степенях. Так, число, которое в десятичной системе читается как десять, в двоичной читается как два. Ведь в этой системе
10 = 1*21 + 0*2, то есть двум.
А число 110 в десятичной
110 = 1*22 + 1*21 + 0*2, то есть шести.
Ну, а теперь вы и сами разберётесь в разночтениях Магистра и Единички.
— Забавная система, — сказал Сева.
— Не только забавная, но и полезная. Ты ведь уже знаешь, что двоичная система принята в большинстве быстродействующих счётных машин.
— Это и я знаю, — обрадовался Нулик. — Нуль означает «нет», а единица — «да»…
Впрочем, президент не стал вдаваться в подробности. Он решил записать число 29 в двоичной системе и добился-таки своего, написал: 11101.
В самом деле: 11101 = 1*24 + 1*23 + 1*22 + 0*21 + 1*2, а это в сумме даёт 29.
Ребята наперебой стали переводить числа из одной системы в другую. Похоже, этому не было бы конца, если бы Олег не вернул чересчур увлекающихся клубменов к их основной деятельности.
— Оказывается, — сказал он, — Магистр не совсем безнадёжен. Он ещё не забыл признака делимости чисел на 11. Но и тот запомнил не до конца. Он отделил цифры, стоящие в числе на нечётных местах, от цифр, стоящих на чётных. При этом суммы их оказались разными. Из этого Магистр заключил, что число на 11 не делится. А ему надо было вычислить разность между этими двумя суммами. Ведь если эта разность делится на 11, то и все число непременно тоже разделится на 11.
— Проверим, — сказал Сева по примеру Нулика. — Число, которое Магистр прочитал на камне, — 6 111 116. Сумма цифр на нечётных местах 6+1+1+6 равна 14, а сумма цифр начётных местах 1+1+1 равна трём. Разность между 14 и 3 равна 11. Ну, а уж 11 на 11 обязательно разделится. Стало быть, и все число на 11 делится. 6 111 116: 11 = 555 556.
Заливисто залаял Пончик.
— Шесть часов, — глубокомысленно заметил Нулик. — Он всегда лает в это время.
— Не собака, а хронометр! — сказал Сева, взглянув на часы. — Пора возвращаться…
Ребята быстро прибрали лужайку (не оставлять же после себя мусор!), и мы двинулись к станции.
По дороге нам предстояло обсудить ещё один каверзный вопрос, который был задан Магистру при входе в пещеру: каковы наибольшее и наименьшее десятизначные числа, состоящие из всех 10 цифр?
— На этот вопрос отвечу я, — сказал президент.
Желание понятное: ведь камнем преткновения для Магистра на этот раз был нуль. Определяя наименьшее число, незадачливый математик подставлял нуль то в начало числа, то в конец, и все без толку. Нулик же поставил нуль тотчас же после единицы и получил искомое: 1023456789 — один миллиард двадцать три миллиона четыреста пятьдесят шесть тысяч семьсот восемьдесят девять. Лихо!
— Могу не только наименьшее, но и наибольшее написать! — расхвастался президент. — Вот, пожалуйста: 9876543210…
— Стоит ли? — возразил Олег. — Ведь это число и сам Магистр записал правильно. Лучше уж подсчитай, сколько вообще можно составить десятизначных чисел из всех десяти цифр. Ведь на этот вопрос Единички Магистр так и не ответил.
— Вот ещё! — заартачился президент. — Он не ответил, а я — мучайся.
На его счастье,
Всю дорогу Нулик распевал какие-то карликанские песни, всем своим видом демонстрируя полную независимость от Магистра и его диссертации. И только при выходе на вокзальную площадь малыш вдруг спохватился:
— Чуть не забыл спросить: что такое софизм?
— Опоздал, брат, — сказал я. — Заседание закрыто. Так что уж подожди до следующего раза.
ДИССЕРТАЦИЯ РАССЕЯННОГО МАГИСТРА
В бочке — по океану!
Мы с Единичкой очень устали. Не столько от хождения по гористому острову, сколько от бесчисленных загадок, которые было не так легко разгадать. Даже мне. А ведь я умею рассуждать логически и, кроме того, великолепно знаю математику. Не то что Единичка. Впрочем, что с неё взять? Одно слово — Единичка! Пристала сегодня с вопросом: как побыстрее вычислить в уме разность квадратов двух чисел? И назвала два числа: 500 и 498. Найти разность их квадратов ничего не стоит! Беру сперва разность этих чисел: 500 минус 498 равно двум. А затем возвожу двойку в квадрат. Вот вам и ответ: четыре. Но Единичка, вместо того чтобы восхититься моей находчивостью, потянула меня в Музей самообслуживания — остров-то ведь необитаемый! И вот там мы увидели необыкновенный экспонат.
Представьте себе на маленьком зеркальце три крохотные чёрные точки. Когда мы посмотрели на них в лупу, то увидели, что это мухи, вернее, мушки — таких маленьких я никогда не видел! Но что произошло дальше… Единичка чихнула, и три мушки мгновенно поднялись в воздух. Первая полетела прямо на восток, вторая взмыла вверх по какой-то замысловатой спирали, а третья принялась кружиться вокруг острова — ни дать ни взять живой спутник! Но самое главное — они летели с различными скоростями. Я уже хотел наброситься на Единичку, ведь это по её милости мушки сорвались с места. Но, оказывается, Единичка тут ни причём: так было задумано. Рядом с зеркалом висела табличка с таким текстом: «Вычислите, через сколько минут после старта три мухи снова окажутся в одной плоскости, если скорость первой мухи вдвое больше скорости второй и втрое больше скорости третьей». Вот так вопрос! Как же я могу вычислить, через сколько времени мухи окажутся в одной плоскости, если скорости их неизвестны? Видимо, тут дирекция музея что-то напутала" Правда, Единичка пыталась ответить на этот вопрос, но сказала такую нелепость, что мне и повторять неловко.
Мы двинулись к выходу. Тут нас ожидал сюрприз. Каждому посетившему Музей самообслуживания разрешалось самому взять на память любую из медалей, развешенных тут же, на доске. На этих медалях были изображения учёных. На каждой стороне разные. Скажем, с одной стороны Эвклид, а на обороте Лобачевский. Или: Птолемей и Коперник, Исаак Ньютон и Альберт Эйнштейн. Но почему эти пары поместили на одну медаль, не понимаю! Что за идея — объединить Эвклида с Лобачевским, Птолемея с Коперником или Ньютона с Эйнштейном? Может, у дирекции не хватило материала и она решила использовать, так сказать, оборотную сторону медали?
Но хуже всего то, что снять эти медали с доски было совершенно невозможно: они висели на разноцветных ленточках, прикреплённых к доске. Чтобы снять медаль, ленточку надо было разрезать. Правда, тут же на столе лежали ножницы. Но какие-то странные: они легко раскрывались, а соединить их снова не было никакой возможности. К счастью, Единичка нашла инструкцию, где говорилось, что ножницы следовало раскрыть на определённый угол, притом с абсолютной точностью! Этот угол должен быть меньше развёрнутого угла ровно в «пи» раз.