Чтение онлайн

на главную - закладки

Жанры

До предела чисел. Эйлер. Математический анализ
Шрифт:

— i: на протяжении большей части своей жизни Эйлер, не обладая строгим и правильным определением предела, записывал как

ex = (1 + x/i)i,

то, что сегодня мы бы записали как

ex = limn->(1 + x/n)n.

В этом примере буква i символизирует бесконечное число. Но в 1777 году ученый передумал и стал использовать ее для обозначения мнимой единицы (комплексного числа). Статья 1777 года была опубликована только в 1794 году, но Гаусс, а с ним и все математическое сообщество, сразу же начали использовать i. Эта буква была выбрана как первая

в немецком слове "мнимый".

у = f(x): Эйлер стал первым ученым, использовавшим современное понятие функции, связав заданное значение х с получившимся значением у посредством соотношения, названного f. Область определения и значений f были четко обозначены. Функция появляется уже в 1734-1735 годах в Commentarii academiae scientiarum imperialis Petropolitanae — первом журнале Петербургской академии наук. И хотя современное понятие функции немного отличается от того, которое имел в виду Эйлер, нельзя не признать, что он сделал огромный шаг вперед в том, что касается ясности определений и описания.

(сигма): Эйлер выбрал эту букву для обозначения суммы последовательности чисел, подчиняющейся какому-либо правилу, которое записывается над или под символом. В общем случае сумма элементов х, где i — "счетчик" слагаемых, идущих от m до n, записывается так:

i=mnxi = xm + xm+1 + xm+2 + ... + xn-1 + xn.

Сигма — греческий аналог буквы "с", с которой начинается слово "сумма", поэтому ее использование кажется вполне логичным. В течение жизни Эйлер вычислил сотни таких последовательностей, многие из которых были бесконечными. При n = последовательность называется рядом. Возможно, самая знаменитая в своей простоте последовательность Эйлера — это последовательность из Базельской задачи, которую он вычислил в 1735 году, на пике своего математического творчества (мы поговорим о ней подробней в следующей главе):

n=11/n2 = 2/6.

Никто не ожидал, что в сумме этой последовательности будет задействовано число , и его появление внесло настоящую неразбериху в умы ученых.

— Заглавные и строчные буквы: в любом треугольнике стороны обозначаются строчными буквами, а соответствующие углы — теми же буквами, но заглавными (рисунок 1).

РИС. 1

РИС . 2

РИС 3

Аналогичным образом буквами R и г обозначаются соответственно радиусы описанной (рисунок 2) и вписанной окружностей (рисунок 3).

— Использование первых букв алфавита (обычно строчных) — а, b, с, d — для обозначения известных величин в уравнениях, и последних — х, у, z, v — для неизвестных величин.

— Сокращенные латинские формы sin, cos, tang, cot, sec и cosec Эйлер впервые использовал в 1748 году в своей книге "Введение в анализ бесконечно малых" для обозначения тригонометрических функций. Затем они были адаптированы к разным языкам, хотя сейчас фактически универсальным является их английский вариант: sin х, cos х, tan х (в русской традиции tg x), cot х (или ctg х), sec х и cosec х.

— Обозначение для конечных разностей: это вычислительный инструмент, немного похожий на производные. Он не использует понятие предела и так называемые бесконечно малые. Конечные разности встречаются уже у Ньютона (1642-1727), Джеймса Грегори (1638-1675) и Колина Маклорена (1698-1746) и позволяют вычислять неизвестные многочлены на основе их значений, а также интерполировать и изучать последовательности и ряды. Изобретение компьютеров сделало их еще полезнее. Эйлер посвятил много сил изучению конечных разностей. Их обозначения, которые сегодня встречаются в книгах, принадлежат ему. В самом простом случае для последовательности {ui} разность двух соседних членов будет обозначаться :

uk = uk+1– uk.

Последующие конечные разности (второго порядка 2, третьего порядка 3, четвертого порядка 4 и так далее) определяются, исходя из разностей первого порядка с помощью рекурсии, то есть каждая использует предыдущую:

puk = (p-1uk).

Таким образом строго определяются конечные разности любого порядка — , 2, 3,... — и с ними можно работать.

ПЕРВОЕ ФУНДАМЕНТАЛЬНОЕ ОТКРЫТИЕ: КОМПЛЕКСНЫЕ ЧИСЛА И ОТРИЦАТЕЛЬНЫЕ ЛОГАРИФМЫ

В серии работ, начатых еще в Базеле, Эйлер открыл формулу комплексных чисел, впоследствии ставшую знаменитой. Он использовал ее для нахождения значения математической категории, до той поры неизвестной, — отрицательных логарифмов. Как мы уже сказали, для обозначения мнимой единицы, -1, Эйлер использовал символ i.

С этого момента подразумевается, что если в арифметической формуле есть i, то

i= -1.

Во время работы в Базеле Эйлер открыл формулу

exi = cos x + isin x

и преобразовал ее так, как только он, великий жонглер символами, был способен. Из этого простого выражения, известного как формула Эйлера, которое связывает комплексные числа с тригонометрией, в последующие столетия произошла, как мы увидим в главе 3, большая часть математического анализа.

Во времена Эйлера пользовались большой популярностью логарифмы — инструмент вычисления, открытый в XVI веке. Однако их потенциал оставался невостребованным вплоть

до появления работ швейцарского ученого. Представим их определение: если а положительное число, называемое основанием, N также положительное число и верно равенство

N = x,

то говорится, что х — логарифм N и пишется х = log2N. Или:

N = logN.

Если основание логарифма — число е, то пишется In N вместо log N.

Господа: это абсолютно верно и совершенно парадоксально, мы не можем понять этого и не знаем, что это означает, но мы это доказали и, следовательно, знаем: это правда.

Поделиться:
Популярные книги

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Мимик нового Мира 3

Северный Лис
2. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 3

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Совок 4

Агарев Вадим
4. Совок
Фантастика:
попаданцы
альтернативная история
6.29
рейтинг книги
Совок 4

Довлатов. Сонный лекарь 2

Голд Джон
2. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 2

Наизнанку

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Наизнанку

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Путь Шамана. Шаг 6: Все только начинается

Маханенко Василий Михайлович
6. Мир Барлионы
Фантастика:
фэнтези
рпг
попаданцы
9.14
рейтинг книги
Путь Шамана. Шаг 6: Все только начинается

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный