Чтение онлайн

на главную - закладки

Жанры

До предела чисел. Эйлер. Математический анализ
Шрифт:

а затем обобщил этот результат, рассмотрев подробнее следующую функцию:

(x) = 1 + 1/2x + 1/3x + 1/4x + ...

Она может принимать любое значение х из области R вещественных чисел. Эйлер вычислил множество значений дзета-функции, но прямой метод нахождения этих бесконечных сумм неизвестен и по сей день. Сам Эйлер открыл способ приведения бесконечной суммы lb к конечному результату, получив, благодаря легкости обращения с алгебраическими формулами, выражение

(x) = n=11/ns = k=11/(1 - 1/pks),

где

рk пересекают исключительно область простых чисел. Так обнаружилась неожиданная связь дзета-функций с этими числами. При помощи инструментов анализа дзета-функцию можно перенести в комплексную область, если брать значения s не из области R (то есть вещественных чисел), а из комплексной области С. Впервые дзета-функцию до этой области расширил и изучил великий немецкий математик Бернхард Риман (1826-1866). Сегодня эта функция известна как дзета-функция Римана, и с ней связана так называемая гипотеза, или проблема Римана: невероятное предположение, которое до сих пор не было доказано и считается одной из главных нерешенных задач современной математики. Гипотеза Римана входит в число семи проблем тысячелетия, за решение каждой из которых Институт Клэя в качестве приза выплатит один миллион долларов.

Связь между Эйлером и Ферма была очень тесной. Если мы проследим научные изыскания Эйлера в теории чисел, то увидим, что в основном он пытался решить одну за другой оставленные без ответа задачи Ферма. Это было непросто, поскольку французский ученый редко записывал свои вопросы отдельно, а обычно делал комментарии прямо в книгах, которые читал и анализировал. Он любил бросать вызов своим коллегам, задавая им задачи, которые сам уже решил.

Один из самых интересных вопросов из наследия Ферма — числа, которые были названы его именем, числа Ферма. Они обозначаются буквой F и определяются формулой

Fn = 22n +1.

При n = 0,1,2,3,4 получим

F0 = 2 20 + 1 = 21 + 1 = 3

F1 = 2 21 +1 = 22 + 1 = 4 + 1 = 5

F2 = 22 2 + 1 = 24 + 1 = 16 + 1 = 17

F3 = 2 23 + 1 = 25 + 1 = 256 + 1 = 257

F4 = 2 24 + 1 = 216 + 1 = 65 536 + 1 = 65 637.

Все они являются простыми числами. Следующее число Ферма выглядит так:

F5 = 2 25 + 1 = 232 +1 = 4 294 967 296 + 1 = 4 294 967 297.

Было бы логично предположить, что оно, как и предыдущие, является простым. По стандартам того времени более рискованно, хотя и не намного, было выдвинуть гипотезу (как сделал Гольдбах) о том, что все эти числа простые, подтверждая тем самым мнение самого Ферма. Гольдбах сообщил Эйлеру об этой задаче в 1729 году, а в 1732-м тот уже нашел ее решение: F5 — не простое число, а составное:

F5 = 4 294 967 297 = 641 • 6700 417.

Первой реакцией на этот результат было изумление. Ведь чтобы провести факторизацию этого числа, деля его на 2,3,5,7, 11,13 и так далее, продолжая перебирать бесконечную последовательность простых чисел, требовались колоссальные усилия.

ПЬЕР ДЕ ФЕРМА

Ферма был юристом по профессии и занимался математикой исключительно как хобби, за что получил прозвище "король любителей". Он внес решающий вклад в создание аналитической геометрии, а также в развитие теории вероятностей и оптики, изучал отражение и преломление света и отнес эти явления к максимумам и минимумам, заложив таким образом основы дифференциального исчисления. Наибольшую известность Ферма принесли его исследования о теории чисел, в которых ярко проявились его удивительные способности и необычные методы работы. Обычно он не записывал свои рассуждения отдельно, а делал, пока хватало места, пометки на полях книг, которые читал. Всемирной известностью он обязан появлению теоремы, гласящей, что "для n > 2 не существует таких целых положительных чисел х, у, z, не равных нулю, для которых справедливо хnn=zn". Она известна как Великая теорема Ферма, и долгое время у нее не было доказательства. Ферма утверждал — хотя, вполне возможно, ошибочно, — что однажды во время чтения он нашел превосходное доказательство, но на полях книги не было достаточно места для его записи. Теорема была доказана в 1995 году Эндрю Уайлсом.

Если же рассмотреть приемы Эйлера подробней, можно понять его метод и, одновременно с этим, гениальность ученого. Постепенно, следуя по скользкому пути деления, Эйлер пришел к выводу — совсем не простому,— что любой делитель F5 должен иметь вид 64n + 1. Таким образом, ему больше не надо было проверять один за другим все простые делители, а только числа 65 (n = 1), 129 (n = 2), 193 (n = 3) и так далее, вычеркивая те, которые простыми не являлись. При n - 10 подсчеты дают 64 -10 + 1 = 641, что является точным делителем.

На сегодняшний день не найдено ни одного другого простого числа Ферма. Все новые, что нам известны,— это составные числа. Было доказано, что начиная с F5 до F32 — а это огромное количество — нет ни одного простого числа. Но это не означает, что они никогда не будут обнаружены. Вопрос об их существовании — всего лишь гипотеза, а в математике гипотезы считаются верными или ложными, только если находится их доказательство или опровержение.

КРЕЩЕНИЕ ЧИСЛА

Параллельно с работой над числами Ферма и все так же в рамках обширной переписки с Гольдбахом Эйлер дал имя математической константе, которая, как мы уже говорили в предыдущей главе, впоследствии стала основой его исследований по теории чисел: это постоянная е. Впервые она появилась под таким обозначением в одном из писем 1731 года. Вне всяких сомнений, это самая известная постоянная после л. Ее приблизительное значение следующее:

е=2,71828182845904523536028747135266249775724709369995...

Сегодня известно более триллиона знаков е после запятой. Хотя Эйлер дал постоянной имя и использовал ее в самых разных областях, он не был ее первооткрывателем в строгом смысле этого слова: е появилась гораздо раньше, но под другим именем и "в тайне", как мы увидим ниже.

Число е родом из области логарифмов, как подчеркивал Эйлер. Эта связь, которую мы подробнее рассмотрим в приложении 1, ускользала от математиков на протяжении века. В защиту современников Эйлера можно сказать, что постоянная е с течением времени зарекомендовала себя как особенно неуловимая.

Поделиться:
Популярные книги

Бывший муж

Рузанова Ольга
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Бывший муж

Идеальный мир для Социопата 12

Сапфир Олег
12. Социопат
Фантастика:
фэнтези
постапокалипсис
рпг
7.00
рейтинг книги
Идеальный мир для Социопата 12

С Новым Гадом

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
7.14
рейтинг книги
С Новым Гадом

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Опер. Девочка на спор

Бигси Анна
5. Опасная работа
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Опер. Девочка на спор

Дракон

Бубела Олег Николаевич
5. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.31
рейтинг книги
Дракон

Мимик нового Мира 5

Северный Лис
4. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 5

Везунчик. Дилогия

Бубела Олег Николаевич
Везунчик
Фантастика:
фэнтези
попаданцы
8.63
рейтинг книги
Везунчик. Дилогия

Маверик

Астахов Евгений Евгеньевич
4. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Маверик

Релокант. По следам Ушедшего

Ascold Flow
3. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. По следам Ушедшего

Sos! Мой босс кровосос!

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Sos! Мой босс кровосос!

Сумеречный Стрелок 4

Карелин Сергей Витальевич
4. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 4

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат

Эксперимент

Юнина Наталья
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Эксперимент