Дорога на космодром
Шрифт:
В 20-х годах австрийский инженер Франц Улинский получил патент на межпланетный корабль, который приводится в движение солнечной энергией. Как это ему удалось – ума не приложу.
Опять вспоминается случай из собственной журналистской практики. Однажды я получил по почте от одного изобретателя проект «пыжеоборачимого двигателя». Специальный механизм затыкал реактивное сопло пыжом (отсюда и название). Давление в камере росло, и в конце концов пыж вылетал, как пробка из бутылки перебродившего кваса. В этот момент, действительно, создавался реактивный импульс, тем больший, чем больше масса пыжа и его скорость. Но тут еще один механизм, похожий на перчатку хоккейного вратаря, на лету ловил вылетевший пыж и передавал его для повторного употребления. Не надо быть большим специалистом, чтобы понять, что «пыжеоборачимый двигатель» работать не мог. Вернее, сделать такую штуку можно, но никого никуда сдвинуть она не сумела бы: толчок в одну сторону, когда пыж вылетает, гасился бы толчком в другую сторону, когда
Франц Улинский придумал, по сути, то же самое, только вместо пыжа у него был газ. Газ под давлением вырывался из сопла, расширялся и создавал реактивную тягу, – все правильно. Но тут газ попадал в трубку низкого давления, которая вела к турбокомпрессору, приводимому в движение за счет электрической энергии, идущей от солнечных батарей. Компрессор сжимал газ, и все повторялось. Вернее, ничего не повторялось, поскольку такой двигатель улететь никуда не мог.
Но в куче заблуждений Улинского было жемчужное зерно истины: солнечные батареи. Во втором проекте полученная ими энергия шла на создание мощного электромагнитного поля, в котором разгонялись электроны. Покидая космический корабль с огромной, околосветовой скоростью, они создавали реактивную тягу. Тут все правильно: перед нами прообраз ионного ракетного двигателя. Однако и этот аппарат Улинского вряд ли полетел бы, но уже не по принципиальным, а по чисто техническим соображениям. Все дело в том, что ныне широко применяемые в космонавтике солнечные батареи, или, говоря «по-ученому», фотоэлектрические преобразователи, имеют слишком малую удельную мощность, чтобы покрыть те колоссальные энергетические затраты, которые требуются для питания ионного двигателя. Еще на заре космонавтики возник вопрос о предельно возможной скорости движения ракеты. Как вы знаете, максимальная теоретически возможная скорость – это скорость света в пустоте: 300 тысяч километров в секунду. Как, каким образом приблизиться к этому пределу? Ведь только тогда можно говорить серьезно о космических полетах за пределами Солнечной системы. Логика рассуждений была довольно проста: если луч света – самое быстрое, что есть в природе, то, стало быть, этот луч и должен нести межзвездный аппарат. Так возникла идея ракеты будущего – фотонной ракеты. Из сопла ионного двигателя вылетают все-таки материальные частицы. Пусть их масса ничтожна, но в принципе, теоретически они вес все-таки имеют. Фотонный двигатель испускает фотоны – кванты света. Вроде бы это тоже частица: фотон имеет массу, энергию, импульс. Но наряду с этим его определяют такие величины, которыми материальные предметы мы не характеризуем: частота, длина волны. Фотон – некий гибрид частицы и волны. Он должен находиться в постоянном движении с постоянной скоростью, равной скорости света. Неподвижный фотон перестает существовать: согласно теории Эйнштейна, масса покоя фотона равна нулю.
Трудно себе представить? Конечно, трудно. Даже невозможно. Помните слова Льва Давидовича Ландау, которые я приводил в первой книге? Представить просто нельзя, можно только понять. Я не буду рассказывать о возможных конструкциях фотонных ракет и тех трудностях, которые должны будут преодолеть создатели звездолетов. Ведь наша книга не столько о машинах, сколько о людях. И если зашел у нас разговор о фотонных ракетах – самых быстрых космических кораблях, которые построил человек пока в своем воображении, быстрее которых по сегодняшним нашим представлениям и знаниям создать невозможно, мы должны вспомнить еще одного замечательного энтузиаста космических полетов – немецкого ученого и инженера Ейгена Зенгера.
Ейген ЗЕНГЕР (1905-1964) – немецкий ученый и инженер, энтузиаст космических полетов. Много лет отдал разработке проекта межконтинентального реактивного самолета и конструированию новых жидкостных ракетных двигателей. Автор книг «Техника полета ракет» и «К механике фотонных ракет». В последней из них Е. Зенгер рассмотрел полет ракеты с фотонным двигателем на основании теории относительности.
Историки ракетной техники справедливо относят Зенгера ко второму поколению пионеров космонавтики, которые идут следом за К. Циолковским, Ф. Цандером, Г. Обертом, Р. Годдардом и Р. Эсно-Пельтри. Он был действительно моложе всех; в 1905 году, когда он родился в маленьком богемском городке Преснице, они уже работали, уже вышла в свет работа Циолковского «Исследование мировых пространств реактивными приборами» – главная книга теоретической космонавтики. Образование Зенгер получил в городе Граце и поначалу хотел стать строителем, но тут-то как раз и попалась ему в руки книжка Г. Оберта «Ракета в межпланетное пространство». Ейген сразу забыл о строительстве. Более всего интересовала его теперь аэронавтика, механика, астрономия. В отличие от Оберта (которым он восхищался) и Годдарда – «чистых ракетчиков», считавших, что ракетная техника – совершенно самостоятельная область и только ракета, конструкция ни на что другое не похожая, может вывести человечество в космос, Зенгер и некоторые его единомышленники, главным образом немецкие и австрийские инженеры Макс Валье, Гвидо Пирке, Франц Гефт, считали космонавтику логическим продолжением авиации. Он стремился к плавному переходу от аэроплана к высотному самолету стратосферы и далее – к заатмосферной технике: «космической лодке», орбитальной станции, космическому кораблю, – это его программа 1929 года.
Преданность своим научно-техническим принципам Зенгер сохранял всю жизнь. И хотя все успехи практической космонавтики связаны именно с ракетами «в чистом виде» – Зенгер знал об этом: он умер в феврале 1964 года, – он продолжал работать как раз на стыке авиации и космонавтики. В январе 1964 года в авиационном журнале «Флюгвельт» Зенгер обращается к европейским государствам с призывом объединиться и начать общую работу над проектом пилотируемого транспортного космического самолета. В набросках его программы отдана дань авиации: этот самолет будет совершать межконтинентальные перелеты. И космонавтике: он сможет доставлять экипаж на орбитальную станцию. В день своей смерти Зенгер продолжает работу над программой этого самолета – прообраза космических кораблей многоразового использования, которые сегодня входят в космонавтику. И пророческими оказались слова молодого Зенгера, записанные давным-давно в его венском дневнике: «А мои серебряные птицы все же будут летать!»
В этой короткой фразе – весь Зенгер. Его отличает от многих его коллег умение видеть сегодняшний день в перспективе грядущих событий. Он любил и умел мечтать. «Всматриваясь в завтра, – писал Зенгер, – мы видим, как химические ракеты сооружают «внешние земные станции», мы видим термоядерные атомные ракеты, движущиеся на межпланетных путях, и, наконец, ракеты с фотонно-ракетными приводами и прямоточными фотонно-реактивными приводами, проникающие в крайние дали космоса на поиски наших братьев во Вселенной. Для этих задач не хватит сил отдельной нации; нам нужны лучшие ученые, лучшие инженеры, лучшие пилоты и вся рабочая сила всех людей; нам нужно человечество, созревшее для межзвездного пространства».
Зенгер – автор еще одного классического труда теоретической космонавтики, книги «К механике фотонных ракет», в которой он рассмотрел такой полет на основании теории относительности.
Будущее техники в понимании Зенгера тесно связано с социальным совершенствованием человечества. Его книга «К механике фотонных ракет» проникнута верой в силу человеческого разума и труда. Он понимает, что только всеобщий мир на планете является непременным условием всякого человеческого прогресса, и выступает поборником всеобщего и полного разоружения. Даже в предисловии своей сугубо научной, переполненной математическими и физическими абстракциями книги о фотонных ракетах он пишет о том, что «…быстрое усовершенствование оружия невероятной разрушительной силы показывает все большую бессмысленность его действительного применения для войны. В недалеком будущем все человечество должно будет признать, что война не только морально, но и технически бессмысленна».
Подчас случались удивительные вещи: человек строил дорогу на космодром, а сам даже и не подозревал, что участвует в этом строительстве, что вообще имеет какое-то отношение к межпланетным путешествиям. Во всяком случае, Ваня Мещерский, когда он в 1878 году оканчивал с золотой медалью Архангельскую гимназию, даже слова такого не знал – «космос». И потом, когда уже был он студентом Петербургского университета, и после, когда сам стал преподавать в университете, а затем во вновь организованном Политехническом институте, никогда не думал о заатмосферных полетах. По его мнению, существовало в мире нечто гораздо более интересное – теоретическая механика, наука, описывающая всевозможные движения всевозможных тел, а поскольку все в мире движется – описывающая весь мир!
В 1897 году, когда Циолковский в Калуге вывел основную формулу движения ракеты, 38-летний Мещерский в Петербурге защищал магистерскую диссертацию на тему «Динамика точки переменной массы». (Кстати, ничего об этом не зная, Циолковский сам «для себя» вывел уравнение движения точки переменной массы и опубликовал это частное решение уравнения Мещерского в 1903 году.) И до наших дней ничего более обстоятельного и полного на эту тему не написано: Мещерский открыл в механике целый раздел, как открывают остров в океане, – тут что-то прибавить трудно. Известный советский механик, много сделавший для космонавтики, профессор А. А. Космодемьянский писал об этой работе Мещерского: «Прозревать будущее развитие науки на десятилетия вперед, даже в какой-нибудь узкой области, дано немногим. Настаивать на необходимости новых путей развития теоретической механики в течение сорока лет, не получая до конца жизни решающих подтверждений важности своих теоретических работ, было очень трудно».
Иван Всеволодович умер в 1935 году, так и не дождавшись того часа, когда работа его кому-нибудь понадобится. Даже среди механиков не все знали о его работах: итальянец Леви-Чивита, например, «открыл» уравнения Мещерского через 31 год.
И вдруг – космическая ракета. Ее масса на активном участке полета меняется в 8-10 раз. И уже нельзя рассчитывать ее движение по Ньютону. И никак без Мещерского это не сосчитать. И вообще выясняется, что второй закон Ньютона просто частный случай уравнения Мещерского.