Достучаться до небес. Научный взгляд на устройство Вселенной
Шрифт:
Большинство людей, с которыми я тогда встречалась, высоко оценивали достижения Галилея и с энтузиазмом говорили об успехах современной науки. Интерес к физике и познания, проявленные мэром Падуи Флавио Дзанонато, произвели впечатление даже на местных физиков. Глава города не только участвовал в научном разговоре за торжественным обедом после прочитанной мной публичной лекции, но и на самой лекции удивил аудиторию коварным вопросом о движении заряженных частиц в Большом адронном коллайдере.
В ходе церемонии присвоения звания почетного гражданина мэр вручил мне ключ от города. Это был фантастический
Кроме ключа, профессор Падуанского университета Массимилла Бальдо–Чолин подарила мне венецианскую памятную медаль. На ней выгравирована цитата из Галилея, размещенная также над входом в здание физического факультета университета: «Io stimo piu il trovar un vero, benche di cosa leggiera, che ’ldisputar lungamente delle massime questioni senza conseguir verita nissuna».
Это переводится так: «Я предпочитаю найти истину в малом, нежели долго спорить о величайших вопросах, не обретая никакой истины».
Я процитировала эти слова коллегам на конференции, потому что в них и сегодня заключается ведущий принцип науки. Научные прорывы нередко вырастают из стремления решить несложные на первый взгляд проблемы (к этому утверждению мы вернемся позже). Не все вопросы, на которые мы ищем и находим ответы, порождают радикальные перемены. И все же продвижение вперед, даже постепенное, периодически кардинально меняет восприятие человеком мира.
В этой главе рассказывается о том, что современные наблюдения, которым, собственно, посвящена эта книга, корнями уходят в научные открытия XVII в. и что фундаментальные достижения того времени в значительной мере определили природу теоретических и экспериментальных методов, используемых нами сегодня. Главные, принципиальные вопросы перед учеными и сегодня стоят в определенном смысле те же, что стояли 400 лет назад; однако физическая теория да и техника сегодня совсем не те, что тогда, поэтому мелкие конкретные вопросы изменились необыкновенно.
ВКЛАД ГАЛИЛЕЯ В НАУКУ
Ученые пытаются достучаться до небес и мечтают преодолеть порог, отделяющий познанное от непознанного. В любой момент, о каком бы ни шла речь, любое исследование начинается с набора правил и уравнений, предсказывающих те явления, которые мы на этот момент способны измерить. Но мы всегда стремимся перейти к режимам, которые до сих пор не удавалось протестировать экспериментально. Вооружившись новейшей техникой и математикой, мы начинаем систематически изучать вопросы, которые в прошлом были лишь предметом ничем не подкрепленных рассуждений или веры. Чем больше максимально точных наблюдений у нас есть, чем определеннее теоретические рамки, в которые укладываются новые измерения, тем лучше и полнее мы понимаем окружающий мир.
После поездки в Падую и осмотра ее исторических достопримечательностей я в полной мере осознала, насколько важную роль сыграл Галилей в формировании такого способа
Но эти изображения еще не были корректными с научной точки зрения. Девушка–гид показала мне Млечный путь на астрологических фресках Палаццо делла Раджоне (по крайней мере, ее учили, что это именно Млечный путь). Однако более опытный гид позже объяснил ей, что такая трактовка изображения неверна и не соответствует времени создания фрески. В те времена люди просто рисовали то, что видели. Вероятно, художник хотел изобразить звездное небо ясной ночью, но не имел в виду ничего определенного вроде нашей Галактики. Науки в современном понимании еще не было.
До Галилея наука полагалась только на непосредственные наблюдения и чистые размышления. Образцом для всех желающих разобраться в устройстве мира служила аристотелева наука. Математику можно было использовать для дальнейших умозаключений, но базовые положения принимались на веру или со ссылкой на прямые наблюдения.
Галилей открыто отказался опираться в своих исследованиях на mondo di carta (мир бумаги); напротив, он хотел читать и изучать libro della natura (книгу природы). Он не только изменил методологию наблюдений; мало того, он едва ли не первым признал огромные возможности эксперимента. Галилей понял, как следует создавать искусственные условия для выявления природы физических законов. Галилей научился при помощи эксперимента проверять гипотезы о законах природы, доказывать и, что не менее важно, опровергать их.
В частности, Галилей проводил эксперименты с наклонными плоскостями — наклоненными ровными поверхностями, которые так часто встречаются, раздражая учащихся, в любом начальном курсе физики. Для Галилея наклонная плоскость не была всего лишь надуманной школьной задачей, каковой она иногда кажется школьникам. Это был способ изучить скорость падающих тел: ведь если «растянуть» спуск объекта на некоторое горизонтальное расстояние, можно будет точно измерить, как он «падает». Время он измерял при помощи водяного хронометра; но этого мало: Галилей придумал хитроумную систему колокольчиков, развешанных на определенных расстояниях друг от друга, и мог определять скорость катящегося вниз шарика на слух (рис. 7), а слух у него был отличный. При помощи этого и других экспериментов в области движения и силы тяжести Галилей вместе с Иоганном Кеплером и Рене Декартом подготовил фундамент для законов классической механики, которые развил Исаак Ньютон.