Древняя Мексика без кривых зеркал
Шрифт:
Более того. Не очень значительный для простого сложения «недостаток» со сменой основания в третьем разряде довольно сильно усложняет другие арифметические операции — даже операцию умножения, ведь нужно не промахнуться с поправками на основание разряда такое количество раз, на сколько идет умножение (разлагаемое на операции сложения).
Впрочем, Томпкинс тут же это и демонстрирует, показывая насколько легко тут ошибиться с поправкой: приводя пример даже простого сложения чисел, он моментально забывает о смене основания разряда и использует везде шаг в 20 раз: 1 — 20 — 400 — 8000 — и так далее…
Что уж говорить об утверждении Кальдерона об астрономических
Любопытно, что использованный майя принцип записи чисел, представляет именно комбинацию аддитивного и позиционного принципов. При этом, для аддитивной части представления числа используются самые простейшие символы — точки и черточки, а вот для чисел, соответствующих основаниям разрядов и относящихся к позиционной части записи, — довольно замысловатые иероглифы. Получается какой-то странный гибрид ужа с ежом… Неужели нельзя было найти символы попроще?… Есть ведь крестики, кружочки, треугольнички…
Есть тут какая-то искусственность, но какая — пока сформулировать до конца не удается…
Кстати, есть еще одна странность, которая касается как раз «кружочка» — то есть нуля, который у майя тоже представлен не самым простым символом — каким-никаким, а рисунком, пусть даже всего лишь в виде стилизованной раковины.
Использование индейцами нуля принято считать чуть ли не величайшим достижением. А уж то, что в этом они опередили народы Старого Света, прямо-таки с гордостью за майя стремится упомянуть практически каждый автор книг по истории Мезоамерики, вновь упоминая про «развитое математическое знание». Только есть ли, чем тут гордиться?…
Ноль, действительно, совершенно не лишний элемент в представлении числа. И с точки зрения системы записи чисел (о которой, собственно, и нужно говорить применительно к майя) он во многом упрощает задачу. Но что будет с точки зрения именно математики?…
А вот для математики, и особенно для математических операций, ноль способен создавать целый ряд проблем. Особенно если речь идет о современной математике и ее физических приложениях. Дело в том, что на ноль нельзя делить!.. Ноль — это своеобразное «исключение из правил». В результате таких его особых свойств, скажем, в любой теории функций с нулем приходится буквально бороться специальными методами.
Простому человеку, далекому от высшей математики, довольно сложно представить себе математику без нуля, и, естественно, введение такого понятия кажется действительно серьезным завоеванием майя. Однако в современной науке под названием «высшая математика» уже имеют место попытки построения математики без нуля, которая, благодаря отсутствию этого «особого числа», предоставляет целый ряд преимуществ…
Так что и с появление нуля у майя далеко не все однозначно: с точки зрения простого представления чисел, это — шаг вперед; а вот с точки зрения современной высшей
Как бы то ни было, появление нуля в системе представления чисел майя понятно и логично. А вот зачем понадобилось менять в одном месте — на третьем разряде — само основание системы счета с 20 на 18?… Подобное искажение единой линии представляется нелогичным и даже неудобным.
Большинство историков сходится в том, что данное искажение было неким образом связано с астрономическими и календарными вычислениями майя. И на это подталкивает еще одна особенность индейской «математики». Дело в том, что в сохранившихся письменных источниках изображения чисел так или иначе привязаны именно к счету дней.
Мне неизвестно, насколько всеобъемлюща эта закономерность. Однако ни в одном из приводимых в доступной литературе переводов текстов майя мне не доводилось встречать, например, счета каких-то предметов или численности армии. Текстов типа «у него было пять наложниц» или «он со своими двадцатью сторонниками» и тому подобное не встречается нигде!.. Только счет в днях от какой-то «нулевой даты».
Конечно, если судить по приводимым историками описаниям испанских конкистадоров и хронистов, индейцы считали не только дни. Но почему тогда это никоим образом не нашло отражения в письменных источниках?… Я не беру тут в расчет так называемое «рисуночное письмо», которое к понятию «развитой письменности» не имеет отношения…
Ведь если дело обстоит именно так, если фиксировался только счет дней, то сам по себе факт столь избирательного использования чисел довольно значителен. Система записи в таком случае теряет еще один признак связи с математикой, один из основных принципов которой заключается в абстрагировании от предмета счета. У майя же мы никакого абстрагирования не наблюдаем. Все получается привязано именно к счету дней…
Но если принять за данность такую привязку, странности искажения системы записи чисел в третьем разряде действительно можно дать более-менее правдоподобное объяснение. Эта запись адаптирована под 360-дневный год, в котором 18 месяцев по 20 дней. И эта адаптация позволяет не только производить подсчет количества 360-дневных лет по уже простой двадцатеричной системе (без каких-либо «исключений» в разрядах), но и легко переходить от счета в днях к счету в годах и наоборот.
Для примера: дата 5.11.7.9.18 означает количество дней, равное 5х144000+11х7200+7х360+9х20+18х1 = 801918. Если перейти теперь к системе с 360-дневным годом, то последняя «цифра» в записи будет означать день месяца, предпоследняя — номер месяца, а остаток (исходная запись с отброшенными двумя последними разрядами) будет означать количество 360-дневных лет. В приводимом примере получим: 18-й день 9-го месяца года, который будет иметь вид 5.11.7 в обычной двадцатеричной системе счета. Или, переходя к обычной нам десятеричной системе (учитывая, что 5х400+11х20+7х1=2227), получим 18-й день 9-го месяца 2227 года.
Действительно, удобно. Но…
Опять возникает «но»…
Если перейти от формально-математических лет к реальным годам, то счет получается довольно приблизительный. Это, конечно, не наша привычная фраза типа «где-то лет десять-двенадцать назад», но все-таки. Погрешность в 5 с лишним дней за год — довольно существенна. Даже в приведенном несколькими строками выше примере ошибка составит около трех десятков лет, то есть что-то сопоставимое по порядку величины со средней продолжительностью жизни того же индейца майя.