Чтение онлайн

на главную

Жанры

Эффективное использование STL
Шрифт:
Где находится первый объект со значением, не предшествующим заданному? find_if lower_bound lower_bound lower_bound Где находится первый объект со значением, следующим после заданного? find_if upper_bound upper_bound upper_bound Сколько объектов имеют заданное значение? count equal_range count count Где
находятся все объекты с заданным значением? equal_range equal_range equal_range find (итеративный вызов)

Несколько странно выгладит частое присутствие

equal_range
в столбце, относящемся к сортированным интервалам. Оно связано с особой ролью проверки эквивалентности при поиске. Использование
lower_bound
и
upper_bound
чревато ошибочной проверкой равенства, а при использовании
equal_range
более естественно выглядит проверка эквивалентности. Во второй строке предпочтение отдается
equal_range
еще по одной причине:
equal_range
работает с логарифмическим временем, а вызов
find
связан с линейными затратами времени.

Для контейнеров

multiset
и
multimap
в качестве возможных кандидатов для поиска первого объекта с заданным значением указаны два алгоритма,
find
и
lower_bound
. Обычно для решения этой задачи выбирается
find
— возможно, вы обратили внимание, что именно этот алгоритм указан в таблице для контейнеров
set
и
map
. Однако
multi
– контейнеры не гарантируют, что при наличии нескольких элементов с заданным значением
find
найдет первый элемент в контейнере; известно лишь то, что будет найден один из этих элементов. Если вы действительно хотите найти первый объект с заданным значением, воспользуйтесь
lower_bound
и выполните вручную вторую часть проверки эквивалентности, описанной в совете 19 (без этой проверки можно обойтись при помощи
equal_range
, но вызов
equal_range
обходится дороже, чем вызов
lower_bound
).

Выбрать между

count
,
find
,
binary_search
,
lower_bound
,
upper_bound
и
equal_range
несложно. Предпочтение отдается тому алгоритму или функции, которые обладают нужными возможностями, обеспечивают нужное быстродействие и требуют минимальных усилий при вызове. Следуйте этой рекомендации (или обращайтесь к таблице), и у вас никогда не будет проблем с выбором.

Совет 46. Передавайте алгоритмам объекты функций вместо функций

Часто говорят, что повышение уровня абстракции языков высокого уровня приводит к снижению эффективности сгенерированного кода. Александр Степанов, изобретатель STL, однажды разработал небольшой комплекс тестов для оценки «платы за абстракцию» при переходе с C на C++. В частности, результаты этих тестов показали, что код, сгенерированный для работы с классом, содержащим

double
, почти всегда уступает по эффективности соответствующему коду, непосредственно работающему с
double
. С учетом сказанного вас может удивить тот факт, что передача алгоритмам объектов функций STL — то есть объектов, маскирующихся под функции, — обычно обеспечивает более эффективный код, чем передача «настоящих» функций.

Предположим,

вы хотите отсортировать вектор чисел типа
double
по убыванию. Простейшее решение этой задачи средствами STL основано на использовании алгоритма
sort
с объектом функции типа
greater<double>
:

vector<double> v;

sort(v.begin, v.end, greater<double>);

Вспомнив о «плате за абстракцию», программист решает заменить объект функции «настоящей» функцией, которая к тому же оформлена как подставляемая (

inline
):

inline bool doubleGreater(double d1, double d2) {

 return d1 > d2;

}

sort(v.begin, v.end, doubleGreater);

Как ни странно, хронометраж двух вызовов sort показывает, что вызов с

greater<double>
почти всегда работает быстрее. В своих тестах я сортировал вектор, содержащий миллион чисел типа
double
, на четырех разных платформах STL с оптимизацией по скорости, и версия с
greater<double>
всегда работала быстрее. В худшем случае выигрыш в скорости составил 50%, в лучшем он достигал 160%. Вот тебе и «плата за абстракцию»…

Факт объясняется просто. Если функция

operator
объекта функции была объявлена подставляемой (явно, с ключевым словом
inline
, или косвенно, посредством определения внутри определения класса), большинство компиляторов благополучно подставляет эту функцию во время создания экземпляра шаблона при вызове алгоритма. В приведенном выше примере это происходит с функцией
greater<double>::operator
. В результате код
sort
не содержит ни одного вызова функций, а для такого кода компилятор может выполнить оптимизацию, недоступную при наличии вызовов (связь между подстановкой функций и оптимизацией компиляторов рассматривается в совете 33 «Effective C++» и главах 8-10 книги «Efficient C++» [10]).

При вызове

sort
с передачей
doubleGreater
ситуация выглядит иначе. Чтобы убедиться в этом, необходимо вспомнить, что передача функции в качестве параметра другой функции невозможна. При попытке передачи функции в качестве параметра компилятор автоматически преобразует функцию в указатель на эту функцию, поэтому при вызове передается указатель. Таким образом, при вызове

sort(v.begin, v.end, doubleGreater);

алгоритму

sort
передается не
doubleGreater
, а указатель на
doubleGreater
. При создании экземпляра шаблона объявление сгенерированной функции выглядит так:

void sort(vector<double>::iterator first, // Начало интервала

 vector<double>:iterator last, // Конец интервала

 bool (*comp)(double, double)); // Функция сравнения

Поскольку

comp
является указателем на функцию, при каждом его использовании внутри sort происходит косвенный вызов функции (то есть вызов через указатель). Большинство компиляторов не пытается подставлять вызовы функций, вызываемых через указатели, даже если функция объявлена с ключевым словом
inline
и оптимизация выглядит очевидной. Почему? Наверное, потому, что разработчики компиляторов не считают нужным ее реализовать. Пожалейте их — народ постоянно чего-нибудь требует, а успеть все невозможно. Впрочем, это вовсе не означает, что требовать не нужно.

Поделиться:
Популярные книги

Бальмануг. Невеста

Лашина Полина
5. Мир Десяти
Фантастика:
юмористическое фэнтези
5.00
рейтинг книги
Бальмануг. Невеста

Истребитель. Ас из будущего

Корчевский Юрий Григорьевич
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Истребитель. Ас из будущего

Герой

Бубела Олег Николаевич
4. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Герой

Низший - Инфериор. Компиляция. Книги 1-19

Михайлов Дем Алексеевич
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Низший - Инфериор. Компиляция. Книги 1-19

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

Убивать чтобы жить 4

Бор Жорж
4. УЧЖ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 4

Приручитель женщин-монстров. Том 6

Дорничев Дмитрий
6. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 6

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника

Кровь и Пламя

Михайлов Дем Алексеевич
7. Изгой
Фантастика:
фэнтези
8.95
рейтинг книги
Кровь и Пламя

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6

Завод-3: назад в СССР

Гуров Валерий Александрович
3. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод-3: назад в СССР

Темный Патриарх Светлого Рода

Лисицин Евгений
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола