Эгоистичный ген
Шрифт:
Как разрешить этот парадокс с двумя разными взглядами на жизнь? Моя собственная попытка сделать это изложена в «Расширенном фенотипе» — книге, которая доставляет мне больше радости и которой я горжусь гораздо больше, чем всеми своими остальными успехами в науке. Эта глава представляет собой квинтэсенцию некоторых тем, рассмотренных в той книге, но, честно говоря, я бы предпочел, чтобы вы прекратили чтение на этом месте и взялись бы за «Расширенный фенотип».
С любой разумной точки зрения естественный отбор не действует на гены непосредственно. ДНК окутана белком, запеленута в мембраны, защищена от внешнего мира и невидима для естественного отбора. Если бы отбор пытался непосредственно выбирать молекулы ДНК, то ему едва ли удалось бы найти для этого какой-нибудь критерий. Все гены так же сходны друг с другом, как все магнитофонные ленты. Важные различия между генами проявляются только в их эффектах. Это обычно означает их воздействие на процессы эмбрионального развития и тем самым на форму тела и поведение. Гены, добившиеся успеха, — это те гены, которые, находясь в среде, подверженной воздействию всех остальных генов данного
Дарвинисты обычно предпочитают обсуждать гены, фенотипические эффекты которых либо способствуют выживанию и размножению всего организма, либо, напротив, снижают шансы на это. Они обычно не рассматривают при этом преимущества для самого гена. Отчасти именно поэтому парадокс, лежащий в самом сердце теории, обычно не ощущается. Например, успех гена может быть обусловлен тем, что он повышает скорость бега у хищника. Все тело хищника, в том числе все его гены, добиваются большего успеха благодаря тому, что он быстрее бегает. Скорость бега помогает хищнику выжить и оставить потомков; и поэтому большее число копий всех его генов, в том числе генов быстрого бега, передаются последующим поколениям. Здесь парадокс исчезает, поскольку то, что хорошо для одного гена, хорошо для всех.
А что было бы, если бы какой-то ген обладал фенотипическим эффектом, благоприятным для самого этого гена, но вредным для остальных генов данного тела? Это не просто полет фантазии. Такие случаи известны — например, загадочное явление, называемое мейотическим драйвом. Мейоз, как вы, вероятно, помните, — это особый тип клеточного деления, при котором число хромосом уменьшается вдвое и в результате которого образуются сперматозоиды и яйцеклетки. Нормальный мейоз представляет собой совершенно честную лотерею. Из каждой пары аллелей только один может оказаться тем счастливцем. который попадет в каждый данный сперматозоид или яйцеклетку. Но этим счастливцем с равной вероятностью может оказаться любой из пары аллелей и, как показывает изучение больших групп сперматозоидов (или яйцеклеток), в среднем одна их половина содержит один аллель, а другая — другой. Мейоз беспристрастен, как подбрасывание монеты. Однако, хотя принято считать, что монета падает случайным образом, даже это — физический процесс, на который оказывают влияние множество обстоятельств (ветер, сила броска и т. п.). Мейоз также представляет собой физический процесс и на него могут оказывать влияние гены. А что, если возникнет мутантный ген, который оказывает влияние не на такой очевидный признак, как цвет глаз или курчавость волос, но на самый мейоз? Допустим, что в результате этого мейоз стал протекать таким образом, что вероятность попадания в яйцеклетку для мутантного гена стала выше, чем для его аллеля. Такие гены существуют и носят название «фактор, нарушающий сегрегацию» (segregation distorter). Они дьявольски просты. Фактор, нарушающий сегрегацию, возникнув в результате мутации, неумолимо распространяется по всей популяции за счет своего аллеля. Это и называется мейотическим драйвом; он происходит даже в том случае, если его воздействия на тело — и на все другие гены данного тела — оказываются пагубными.
На протяжении всей этой книги мы постоянно были настороже, допуская возможность тонкого жульничества со стороны отдельных организмов в отношении своих социальных партнеров. Здесь же речь пойдет об отдельных генах, обманывающих другие гены, которые находятся вместе с ними в одном теле. Генетик Джеймс Кроу (James Crow) назвал их «генами, которые губят систему». Один из наиболее хорошо известных факторов, нарушающих сегрегацию, — это так называемый ген t мышей. Если мышь несет два гена t, то она обычно гибнет в молодом возрасте или же бывает стерильной. Поэтому говорят, что ген в гомозиготном состоянии «летален». Самец мыши, содержащий только один ген t, нормален и здоров, если не считать одной особенности: при исследовании его спермы оказывается, что до 95% сперматозоидов содержат ген t и только 5% несут нормальный аллель. Резкое нарушение ожидаемого 50%-ного соотношения совершенно очевидно. Как только в природной популяции в результате мутации появляется аллель t, он немедленно распространяется подобно лесному пожару. Да и как ему не распространяться, если он обладает таким огромным несправедливым преимуществом в мейотической лотерее? Ген t распространяется с такой быстротой, что очень скоро многие индивидуумы, входящие в данную популяцию, получают его в двойной дозе (т. е. от обоих родителей). Эти индивидуумы гибнут или оказываются стерильными, так что через некоторое время вся локальная популяция может вымереть. Судя по некоторым данным, в прошлом природные популяции мышей в самом деле вымирали в результате эпидемий генов t.
Не все факторы, нарушающие сегрегацию, обладают такими разрушительными побочными воздействиями, как ген t. Тем не менее большинство из них имеет по крайней мере некоторые вредные последствия. (Почти все побочные генетические эффекты неблагоприятны, и новая мутация обычно распространяется только в том случае, если ее благоприятные эффекты перевешивают неблагоприятные. Если как хорошие, так и плохие воздействия затрагивают все тело, то суммарный эффект все же может быть благоприятным для него. Но если неблагоприятные эффекты относятся к телу, а благоприятные — только к данному гену, то с точки зрения тела суммарный эффект совсем плох.) Если в результате мутации возникнет фактор, нарушающий сегрегацию, то, несмотря на свои гибельные побочные эффекты, он несомненно распространится по всей популяции. Естественный отбор (который в конечном итоге действует на уровне гена) благоприятствует этому фактору, хотя его эффекты на уровне индивидуального организма, вероятно, окажутся неблагоприятными.
Хотя факторы, нарушающие сегрегацию, существуют, однако они немногочисленны. Мы могли бы задать вопрос, почему они встречаются не очень часто, или, что то же самое, почему процесс мейоза обычно столь же скрупулезно беспристрастен, как подбрасывание монеты. Мы обнаружили бы, что необходимость отвечать на него отпадет, как только мы поймем, почему вообще существуют организмы.
Индивидуальный организм — это нечто, чье существование большинство биологов принимают как не требующее доказательств, возможно потому, что его части так тесно сотрудничают, образуя единое и интегрированное целое. Вопросы о жизни — это всегда вопросы об организмах. Биологов интересует, почему организмы делают то или это. Они часто задают себе вопрос, почему организмы группируются в сообщества. Однако при этом они не спрашивают, хотя им следовало бы сделать это, почему живая материя группируется в организмы. Почему мировой океан не остался первобытным полем битвы свободных и независимых репликаторов? Почему древние репликаторы объединяются, образуя громоздкие роботы, в которых они и обитают, и почему эти роботы — индивидуальные тела, вы и я, — такие большие и такие сложные?
Многим биологам даже не придет в голову, что здесь вообще может возникнуть вопрос. Все дело в том, что они привыкли ставить свои вопросы на уровне индивидуального организма. Некоторые биологи заходят даже так далеко, что рассматривают ДНК как механизм, используемый организмами для размножения, подобно тому, как глаз — это механизм, используемый для того, чтобы видеть! Читатели этой книги поймут всю ошибочность подобных представлений. Это истина, грубо поставленная с ног на голову. Они не могут не понимать также, что альтернативный взгляд на жизнь — взгляд с позиций эгоистичного гена — таит в себе собственную глубокую проблему. Это проблема — почти противоположная изложенной выше — о том, почему вообще существуют индивидуальные организмы, и притом такие крупные и такие явно целенаправленные, что они сбивают с толку биологов, заставляя их видеть все наоборот. Для того чтобы решить стоящую перед нами проблему, мы должны прежде всего освободиться от своих прежних взглядов, в соответствии с которыми, не признаваясь в этом, мы считаем индивидуальный организм чем-то само собою разумеющимся, не требующим доказательств; иначе мы станем воспринимать спорный вопрос как решенный. Средством для прочищения наших мозгов послужит идея о том, что я назвал расширенным фенотипом. Вот этим-то я сейчас и хочу заняться.
Фенотипическими эффектами данного гена обычно считаются все его воздействия на то тело, в котором он находится. Это общепринятое определение. Однако, как мы сейчас увидим, фенотипическими эффектами данного гена следует считать все воздействия, оказываемые им на окружающий мир. Возможно, что эффекты данного гена в сущности не выходят за пределы той последовательности тел, в которых он находится. Но в таком случае это всего лишь «в сущности». Это не должно входить в наше определение. При всем том следует помнить, что фенотипические эффекты данного гена — это те рычаги, с помощью которых он переносит себя в следующее поколение. Я хочу добавить к этому всего лишь одно: эти рычаги могут выходить за пределы индивидуального тела. Что может практически означать идея о расширенном фенотипическом воздействии гена на мир, лежащий за пределами того тела, в котором этот ген находится? При этом прежде всего приходят в голову такие артифакты, как плотины бобров, гнезда птиц и домики ручейников.
Ручейники — это довольно невзрачные насекомые тускло-коричневого цвета, которые неуклюже летают над рекой, не привлекая внимания большинства из нас. Однако прежде чем достигнуть взрослого состояния, они проходят через довольно длительную личиночную стадию, разгуливая по речному дну. Личинка ручейника — одно из самых замечательных созданий, населяющих землю. Она искусно строит для себя домик в форме трубочки из всевозможных материалов, лежащих вокруг на речном дне, цементируя их своей слюной. Этот переносный домик-чехлик личинка несет на себе, подобно раковине улитки или рака-отшельника, с той разницей, что она не выращивает и не находит его, а строит. Некоторые виды ручейников используют в качестве строительного материала веточки, другие — кусочки мертвых листьев или мелкие ракушки. Но, вероятно, самые замечательные домики ручейники строят из крупных песчинок. Личинка тщательно выбирает песчинки, отбрасывая те, которые слишком велики или слишком малы для заполняемой в данный момент дырки в стенке, и даже поворачивает каждую песчинку разными сторонами, пока она не ляжет как можно плотнее.
Почему это производит на нас такое впечатление? Если бы мы потрудились отнестись к этому более беспристрастно, нас несомненно гораздо сильнее должно было бы поразить строение глаза или суставов конечностей у ручейника, чем сравнительно скромная архитектура его каменного домика. Ведь на самом деле глаз или суставы «задуманы» и устроены много сложнее, чем этот домик. И тем не менее на нас, вопреки всякой логике, большее впечатление производит домик; возможно, это объясняется тем, что глаза и суставы развиваются у ручейников примерно таким же образом, как наши собственные глаза и локти, в процесс созидания, который мы не ставим себе в заслугу, поскольку он происходит в то время, когда мы находимся во чреве наших матерей.