Электроника?.. Нет ничего проще!
Шрифт:
Н. — Это дьявольски сложно. Все явления происходят одновременно и к тому же воздействуют друг на друга, поэтому я с большим трудом проследил за ними.
Л. — Для облегчения твоей задачи я вычертил на рис. 85 кривые, характеризующие изменения во времени потенциалов в различных элементах схемы. Как мы видим, в точку А в момент t0 подают отрицательный импульс. В этот момент потенциал коллектора транзистора Т1 стремится повыситься до +Е. Это повышение через цепочку R3 — R4 передается на базу транзистора T2, которая сначала была заперта напряжением —U, а теперь ее потенциал поднимается до нуля. Как ты видишь, это вызывает отпирание транзистора Т2
Рис. 85. Эпюры напряжений в схеме с одним устойчивым состоянием, изображенной на рис. 84.
Н. — Я хотел бы знать, откуда берется эта величина —Е?
Л. — Но, Незнайкин, разве ты забыл известный принцип, что напряжение на выводах конденсатора не может измениться на конечную величину за равное нулю время. Если ты об этом вспомнишь, то увидишь, что перед самым приходом отрицательного импульса в точку А потенциал коллектора Т2 был равен Е (транзистор Т2 был заперт). Потенциал базы транзистора Т1 был почти равен нулю, следовательно, конденсатор С был заряжен до напряжения, очень близкого к Е. Сразу же после опрокидывания схемы он еще был заряжен до напряжения Е. При этом потенциал на нижней (базовой) обкладке равен —Е относительно верхней. Затем потенциал его верхней обкладки стал близким нулю (транзистор Т2 в состоянии насыщения замкнул верхнюю обкладку на корпус) и, следовательно, потенциал базы Т1, равный потенциалу нижней обкладки относительно верхней, стал близким —Е.
Н. — Признаюсь, что я не подумал о твоем знаменитом принципе, так как забыл вырезать его золотыми буквами на своем камине, но поверь мне, теперь за этим дело не станет. По твоим кривым я вижу, что сразу же после опрокидывания схемы потенциал базы транзистора Т1 начинает повышаться. Я полагаю, что причиной послужил ток, протекающий по резистору R5.
Л. — И ты не ошибся. Когда транзистор Т1 находится в состоянии насыщения, проходящий по резистору R5 ток течет по направлению к базе этого транзистора. А теперь при запертом транзисторе Т1 добавляется ток разряда конденсатора С. Через время, определяемое величиной CR5, потенциал базы транзистора Т1 доходит почти до нуля — это происходит в момент t1. Как ты видишь, в этот момент транзистор Т1 вновь начинает пропускать ток; потенциал его коллектора падает до нуля, что приводит к запиранию транзистора Т2, потенциал коллектора которого повышается до + Е.
Н. — А почему ты, Любознайкин, на своем рисунке на кривой потенциала коллектора транзистора Т2 изобразил участок возрастания относительно пологим?
Л. — Не забывай, что для повышения потенциала коллектора транзистора Т2 протекающий по резистору R2 ток должен сначала зарядить конденсатор С. На нижней обкладке последнего переход база — эмиттер проводящего транзистора поддерживает потенциал, почти равный нулю. Следовательно, этот конденсатор заряжается постепенно и вслед за ним медленно повышается потенциал коллектора Т2.
Н. — Я начинаю понимать работу твоей занятной схемы. И все же она производит очень странное впечатление. Стоит только транзистору Т2 начать пропускать ток, как его опять очень быстро запирают. Он должно быть чувствует себя обманутым.
Л. — Отложи, пожалуйста, на более подходящее время анализ чувств транзисторов, а пока займись вопросом практического использования схемы, которая во многих случаях может оказаться очень полезной.
Н. —
Л. — И это очень хорошо. Первое опрокидывание схемы производится внешним импульсом, а второе происходит самопроизвольно, поэтому эту схему можно назвать одновибратором. Впрочем, иногда встречается и название «однотактный мультивибратор». Но это название бросает меня в дрожь, потому что содержит в себе противоречие. С таким же успехом можно говорить о темном свете или металлическом ксилофоне [13] . Эта схема интересна тем, что при любом пришедшем в точку А импульсе при условии, что он достаточен для срабатывания схемы, с коллектора транзистора Т1 получают единственный сигнал, всегда одинаковый по длительности и амплитуде. Следовательно, эта схема — прекрасный инструмент для преобразования импульсов с целью придания им единой формы. Ты, вероятно, помнишь, что счетчик Гейгера — Мюллера дает совершенно разные по форме импульсы. Подав такие импульсы на однотактный триггер, например, изображенный на рис. 84, мы можем сделать их совершенно идентичными, что, помимо других преимуществ, в частности, облегчает их счет.
13
Название ударного музыкального инструмента ксилофона образовано из греческих слов «ксилон» — дерево и «фоне» — голос. (Прим. перев.)
Н. — На мой взгляд, проще пропустить их через амплитудный ограничитель.
Л. — Но полученный результат был бы существенно хуже. Ведь данный счетчиком Гейгера — Мюллера очень высокий импульс одновременно больше других и по продолжительности, потому что в этом случае деионизация трубки занимает больше времени. При использовании простого амплитудного ограничителя мы получили бы импульсы одинаковой высоты, но разной ширины. Впрочем, есть еще одна весьма интересная область применения для нашего однотактного триггера. Представь себе, что напряжение с коллектора транзистора Т1 подается на дифференцирующую схему, которая, например, приведена на рис. 64. Что случится, если конденсатор С и резистор R взять с довольно малыми номиналами?
Н. — Если я не забыл твоих объяснений, на выходе этой схемы мы получим положительный импульс в момент t0 (рис. 86), т. е. когда потенциал коллектор Т1 резко повышается, а затем отрицательный импульс в момент t1, когда транзистор Т1 вновь отпирается, и потенциал его коллектора резко падает.
Рис. 86. Подавая сигнал с коллектора транзистора Т1схемы с одним устойчивым состоянием на дифференцирующую схему, можно получить отрицательный импульс в момент t1 с некоторой задержкой по сравнению с пусковым импульсом.
Л. — Незнайкин, ты все меньше и меньше соответствуешь своему имени! Сказанное тобой абсолютно правильно. Предположим, что в этих условиях я с помощью диода уберу положительный импульс, останется только отрицательный импульс, появляющийся в момент t1. Такой импульс задержан относительно пускового импульса на время, которое зависит только от номиналов резисторов и конденсаторов схемы (рис. 84). Таким образом, мы сделали схему задержки импульсов: если подать импульс в точку А, то из нашего устройства импульс выйдет с хорошо известной задержкой, длительность которой можно изменять от долей микросекунды до нескольких секунд путем соответствующего подбора элементов схемы.
Н. — Ну, за это изобретение я тебя поздравлять не собираюсь! Мы постоянно слышим, что радиоэлектронике свойственна быстрота, а ты изобрел способ создавать опоздания — ты идешь против прогресса.
Л. — Незнайкин, не играй словами. При выполнении последовательного ряда операций довольно часто бывает необходимо содержать сигнал на регулируемый отрезок времени. К такому способу, в частности, прибегают, когда с помощью сигнала хотят иметь систему единого времени для включения изучаемого процесса и начала развертки осциллографа, предназначенного для наблюдения этого процесса. Сигнал включают с определенной задержкой, а осциллограф — без задержки. Благодаря этому мы можем превосходно следить за процессом по экрану осциллографа, так как его развертка включается до начала процесса.