Электроника?.. Нет ничего проще!
Шрифт:
Н. — Тогда я больше ничего не понимаю. Ведь такая схема превратит каждый прямоугольный сигнал в два импульса, первый положительный и второй отрицательный.
Л. — Это может произойти только с очень широкими импульсами. Вспомни, что мы говорили о возможности создания схемы произведением RC достаточно большой величины по сравнению с продолжительностью импульса. Если на такую схему подать длинный импульс (рис. 90, а), выходное напряжение получится действительно такое, как показано на рис. 90, б: в начале положительный импульс, а за ним отрицательный.
Рис. 90. Прямоугольный
Как ты видишь, продолжительность входного сигнала настолько велика, что конденсатор за время сигнала успевает полностью зарядиться. Если же я пошлю более короткий импульс (рис. 91, а), то при прохождении сигнала конденсатору не хватит времени зарядиться (вернее, он зарядится очень немного). И на выходе схемы мы получим сигнал, близкий к изображенному на рис. 91, б, который практически не содержит отрицательного импульса.
Рис. 91. Прямоугольный импульс (а), поданный на схему с RC, много больше его длительности, деформируется мало, его отрицательный выброс невелик (б).
С помощью системы, срезающей положительные импульсы и обнаруживающей отрицательные, превышающие заданный порог, можно создать схему, способную разделить импульсы на короткие (которые не дадут выходного сигнала) и длинные (которые дадут на выходе сигналы по окончании длинного импульса).
Н. — Не могу сказать, что это удачно. Почему не создать систему, которая давала бы сигнал в самом начале длинного импульса?
Л. — Скажи, пожалуйста, Незнайкин, неужели ты думаешь, что система способна превратиться в гадалку; ведь короткий и длинный импульсы начинаются совершенно одинаково. Лишь добравшись до конца, можно определить, имеем мы дело с коротким или с длинным импульсом.
Н. — Согласен… Признаюсь, что об этом я не подумал.
Л. — Это доказывает, что всегда, прежде чем говорить, полезно немного подумать. Теперь нам может понадобиться различать сигналы по их форме. Мы, например, можем сделать систему, выявляющую только короткие импульсы и не реагирующую на медленные изменения сигнала. Для этого достаточно использовать нашу дифференцирующую схему на рис. 64. Если на вход этой схемы подать медленно изменяющееся напряжение, то на выходе практически ничего не получим, так как пока напряжение медленно изменяется, конденсатор успеет зарядиться или разрядиться при минимальном зарядном или разрядном токе, который создаст лишь очень небольшое напряжение на резисторе, в то время как резкое изменение напряжения на входе будет полностью передано конденсатором и, следовательно, мы его получим на выходе.
Н. — Твое объяснение я понял, но совершенно не вижу, какую пользу может принести умение отделять быстро изменяющиеся сигналы от медленно изменяющихся.
Л. —
Н. — О, не говори мне больше об этом ужасе, о нем я буду помнить всю жизнь!
Л. — Ты, вероятно, тем не менее помнишь, что я рекомендовал тебе использовать фотоэлектрический элемент. В этом случае было бы целесообразно поставить после фотоэлемента схему, чувствительную только к таким резким изменениям освещенности, какие может вызвать человек, проходящий между лампой и фотоэлементом. Таким образом, удастся устранить воздействие медленных изменений освещенности фотоэлемента, например при восходе солнца или при наступлении темноты.
Н. — А что нужно сделать, если бы потребовалось прямо обратное, т. е. система, чувствительная только к медленным изменениям освещенности и не реагирующая на резкие изменения?
Л. — В таком случае можно просто-напросто воспользоваться интегрирующей схемой на рис. 70. Если схема (см. рис. 64) представляет собой фильтр верхних частот, то схема (см. рис. 70) работает как фильтр нижних частот. Она устраняет высокочастотные составляющие или быстрые изменения и сохраняет постоянную и низкочастотные составляющие.
Одну аналогичную систему я установил на своем автомобиле. В передней части капота я поместил маленький фотоэлемент, который, приводя в действие триггер Шмитта, зажигает лампу на приборной доске, когда становится довольно темно, но пока я еще не включил фары. А так как я не хотел, чтобы эта лампа сигналила каждый раз, когда я проезжаю под тенистыми деревьями, я поставил фильтр, схема которого изображена на рис. 70, и снабдил его постоянной времени на добрый десяток секунд. Все происходит так, как если бы мой фотоэлемент срабатывал очень медленно и реагировал только на среднюю яркость неба, на которое он направлен.
Н. — Очень остроумная идея. Однако я хотел бы точно знать, что ты подразумеваешь под постоянной времени.
Л. — Речь идет о совершенно классической величине, которую используют во всех схемах, построенных на резисторе и конденсаторе. Видишь ли, Незнайкин, при умножении емкости конденсатора С, стоящего, например, в интегрирующей схеме, на сопротивление резистора R получают величину, которая имеет размерность времени и может быть выражена в секундах (при условии, что С выражено в фарадах, a R — в омах). Это время, необходимое для заряда или разряда конденсатора через резистор на 63 % относительно установившегося значения. Не проси меня обосновать это число, ибо это вынудило бы нас заняться дифференциальными уравнениями.
Н. — Все, что хочешь, но только не это!
Л. — Успокойся, в этом нет необходимости. По прошествии времени, равного постоянной времени RC, конденсатор зарядится или разрядится на 63 % относительно установившегося значения. По истечении удвоенной постоянной времени он зарядится или разрядится на 86 %. И, наконец, по прошествии утроенной постоянной времени его заряд (или разряд) достигнет 95 %. Иначе говоря, на характеристиках каждой конкретной дифференцирующей или интегрирующей схемы сказываются не индивидуальные значения R или С, а их произведение, выражаемое в секундах (или микросекундах) и именуемое постоянной времени.