Энциклопедический словарь (К)
Шрифт:
С. Р.
К. белый (Chamaecyparis spheroides L.) — американское дерево, очень похожее по виду на негниючку. Растет, хотя и медленно, на очень сырых и болотистых местах и доставляет древесину высоких технических качеств; разводится семенами и даже черенками; К. болотный, виргинский или черный (Cupressus disticha L, Taxodium distichum Rich.) образует обширные леса в Сев. Америке, преимущественно в штатах Нью-Джерси, Вирджинии и Южн. Каролине; встречается и на сплошной мексиканской возвышенности (5400 — 7200 фт. над ур. м.). Произрастает на очень влажной, и даже болотной, почве и по береговым низменностям, богатым перегноем и покрытым водой, хотя, впрочем, нижняя его часть тогда дупловата. Достигает 25 — 45 м. высоты и 2 — 4 м. толщины и живет тысячелетия. Возобновляется легко не только отменами, но и корневыми отпрысками. Древесина черного К. отличается мягкостью, плотностью и большой прочностью, как в земле, так и в воде. В торговле различают два ее вида: белую, светлую, получаемую с влажной песчаной почвы, и черную, или темно-коричневую, выросшую на болотной почве, хотя, впрочем, причины этого различия еще не вполне выяснены.
В. С.
Кипение
Кипение — явление, обнаруживаемое жидкостями, когда во всей массе их происходит образование пузырьков пара. Если же пар образуется только на поверхности жидкости, то происходит испарение;
1) Условия К. При данной температуре на поверхности жидкости устанавливается определенное давление ее пара, которое называется упругостью насыщенного пара. Образование пара наступает немедленно, если имеется свободная поверхность жидкости. Если же жидкость смачивает твердое тело, или, если дело идет о явлениях внутри жидкости, то жидкость можно при этих условиях нагреть до температуры высшей, чем темпер. К., а самого К. не произойдет. Сверх внешнего давления в этом случае нужно преодолеть еще силы сцепления и, потому, образование пара происходит лишь при температуре более высокой. Этим обуславливается возможность «перегревания» жидкостей, т. е. нагревание их выше температуры К., без К. В перегретом состоянии достаточно образовать внутри жидкости ничтожную свободную поверхность, чтобы вызвать образование громадных количеств пара. К. происходит тогда взрывом, при чем темпер. перегретой жидкости сразу падает до температуры К. Если не соблюдены особые условия, то К. должно неизбежно происходить толчками при резких колебаниях температуры жидкости. Такой вид К. представляет большую опасность для паровых котлов; вода, находящаяся в таких условиях К., называется сонной водой. «Перегревание» — нормальное явление для жидкостей, а потому на практике колебания температуры внутри жидкости во время К. наблюдаются в большей или меньшей степени всегда. Чем ровнее кипит жидкость, тем эти колебания меньше. Чтобы достигнуть ровного К., нужно, чтобы не только внешняя горизонтальная поверхность жидкости была свободна, но чтобы подобные же условия имели место и в глубине, чтобы там жидкость соприкасалась с твердыми телами, напр. со стенками сосуда, не вполне их смачивая. В этом отношении громадное влияние оказывает способность поверхностей твердых тел сгущать газы и упорно их удерживать. Поверхности твердых тел всегда обладают такой оболочкой сгущенного воздуха, а потому и образование пузырьков газа наблюдается у стенок сосуда, или у погруженной в жидкость палочки, или у плавающей в жидкости пылинки. По мере того, как К. продолжается, вместе с парами уходит с поверхности твердых тел, соприкасающихся с жидкостью, сгущенный газ и происходит полное смачивание. Тогда наступают условия перегревания, и жидкость начинает кипеть толчками. Устранить это явление можно несколькими способами. Или во время К. во внутрь жидкости пропускают весьма слабый ток газа, или к жидкости прибавляют твердого тела, лежавшего на воздухе, в порошке (чаще всего прибавляют тальк, как минерал, мало поддающийся химическим действиям). Для той же цели смазывают стенки паровых котлов смолой. Тогда смола, медленно разлагаясь, от нагревания дает постоянно газы, обуславливающие ровное К. и, сверх того, препятствующие осаждению на стенках плотной накипи.
2) Нахождение температуры К. производится погружением термометра в пары кипящей жидкости, а не в самую жидкость.
Температура кипящей жидкости может, как указано выше, значительно колебаться и, сверх того, она изменяется с глубиной. Чем глубже образуются в жидкости пузырки пара, тем большему внешнему давлению они подвержены и тем выше, следовательно, должна быть их температура, ибо к давлению атмосферы на поверхности присоединяется вес столба жидкости. Выходя с поверхности жидкости, пар принимает температуру, отвечающую температуре насыщенного пара при давлении атмосферы, которое мы наблюдаем. Необходимо при этом только защитить термометр от лучистой теплоты. Найденную таким образом температуру К. необходимо исправить, чтобы привести к нормальным условиям. Не всегда весь ртутный столб удается погрузить в пары; тогда вводится поправка термометра .Чтобы затем найти температуру К., отвечающую нормальному атмосферному давлению, нужно знать, как изменяется упругость насыщенного пара с температурой. Эти изменения различны у разных жидкостей. В среднем можно принять, что изменение атмосферного давления на 26 мм. вызывает перемену в температуре К. на один градус.
К. смесей и растворов. Перегонка. Если наблюдение температуры К. произведено правильно, то однородная жидкость показывает во все время К. одну и ту же, характерную температуру. Непостоянство температуры К. — верный признак присутствия в жидкости посторонних подмесей. Чтобы отделить эти подмеси, К. соединяют с сжижением пара и тогда операция носит название перегонки. Пары кипящей жидкости вводят в холодильник и стекающую из него жидкость разделяют на фракции с различной температурой К. Применяя «повторную перегонку», достигают выделения жидкостей с более или менее постоянной температурой К. Достижение результата ускоряется применением дефлегматоров — приборов, в которых часть пара сгущается в жидкость, стекающую обратно в кипятильник .
Под явлением К. нужно различать два случая: К. неоднородной смеси и К. раствора. К. смеси двух жидкостей, нерастворяющихся друг в друге, представляет весьма интересные особенности. Температура К. остается постоянной, пока имеется смесь, и всегда ниже, чем температура К. каждой из жидкостей в отдельности. Каждая из жидкостей образует насыщенный пар с той же упругостью, как в отдельном состоянии, и К. начинается тогда, когда сумма упругостей насыщенных паров обеих жидкостей достигает величины атмосферного давления. Давление пара каждой из жидкостей оказывается, поэтому, меньше атмосферного и К. происходит, как под уменьшенным давлением. Этим пользуются часто, чтобы перегнать с водяным паром при температуре ниже 100° жидкости, несмешивающиеся с водой и кипящие при температуре гораздо более высокой. Этим способом отгоняют также из частей растений пахучие эссенции, эфирные масла и т. п. Если перегонке подвергаются только две несмешивающиеся жидкости, то во все время К. смеси наблюдается постоянная температура и постоянное отношение между количествами жидкостей в перегоне. Определив это отношение, зная температуру К. смеси и давление, под которым производится
К. растворов. Простейший случай наблюдается, когда в жидкости растворено не летучее твердое тело. Тогда температура К. всегда является повышенной и тем больше, чем больше содержание твердого тела. Для наблюдения температуры К. в этом случае необходимо, однако, термометр ввести в пары предварительно нагретым. Если это невыполнено, то на холодной поверхности термометра осядет чистая жидкость, и термометр долгое время будет показывать температуру К. не раствора, а чистой жидкости. Простой зависимости между температурой К. и содержанием твердого тела в растворе не наблюдается; взамен этого для данного случая существуют простые отношения между упругостями пара раствора и чистой жидкости при постоянной температуре. В случае раствора двух жидкостей каждая из них выделяет пары, представляющие также меньшую упругость, чем пары чистой жидкости при той же температуре. К. наступает тогда, когда сумма упругостей равна атмосферному давлению. Чем больше содержание в растворе одной из жидкостей, тем более понижена упругость пара другой, с нею смешанной. Величины упругостей паров и весовые отношения тел в парах меняются при изменении состава раствора. Поэтому, при К. раствора наблюдают вообще непрерывное изменение температуры К. и непрерывное изменение состава перегона, причем в первых фракциях преобладает жидкость с более низкой температурой К. В редких случаях растворы двух жидкостей, составленные в определенной пропорции, представляют постоянную температуру К. и дают перегон одного и того же состава во все время перегонки. Избыток одной из жидкостей делает температуру К. в этом случае так же изменяющейся; но, по удалении избытка повторенной перегонкой, мы снова получаем раствор того же состава с постоянной температурой К. Taкиe «постоянно-кипящие» растворы, по своему характеру приближающиеся к определенным химическим соединениям и потому представляющие значительный интерес, были предметами многих исследований. Признак таких растворов: одинаковость весовых отношений тел в парах и в растворе. Только в таком случае, при кипении раствора, состав его будет оставаться неизменным. Исходя из простых механических условий парообразования, можно вывести, что это условие должно быть соблюдено при определенных соотношениях между величинами упругостей пара жидкостей в отдельном состоянии и величинами упругостей пара их растворов. В обычных случаях, упругости пара растворов представляют величины средние между величинами упругостей пара взятых жидкостей. При К. таких растворов, температура К. непрерывно меняется в пределах температур К. жидкостей, образующих раствор, и, в тоже время, непрерывно меняется состав перегона, причем в первых его фракциях преобладает жидкость с низшей температурой К. Если же упругости пара растворов представляют величины или большие, или меньшие, чем для жидкостей в отдельном состоянии, то явления К. раствора существенно меняются. Теория показывает, что здесь необходимо должен существовать раствор, представляющий одинаковые весовые отношения тел в парах и в растворе и, следовательно, неизменяющийся при К. Такой раствор отвечает или наибольшей, или наименьшей упругости пара, т. е. представляет или наиболее высокую, или наиболее низкую температуру К. из всех растворов, которые образует данная пара жидкостей. Так, вода с температурой К. 100 (и азотная кислота с температурой К. 86(образуют раствор, неизменяющийся в составе при К. и кипящий при 120,5°. Раствор этот содержит около 70% азотной кислоты. Все растворы с иным содержанием кислоты будут представлять температуру К. ниже 120,5 (Пропиловый спирт с температурой К. 97,4° образует с водой раствор, кипящий без изменения состава при 85,5°, т. е. при температуре низшей, чем температура К. обеих составных частей раствора. При кипении раствора иного состава, чем раствор с максимальной или с минимальной температурой К., температура К. непрерывно меняется и происходит изменение состава раствора с тем лишь отличием, что окончательным результатом повторенной перегонки является разделение взятого раствора на две части: постоянно кипящий раствор с максимальной, или с минимальной температурой К. и более или менее чистая жидкость, содержавшаяся в избытке. И в этом случае при К. раствора удаляются части ниже кипящие, а остаются — выше кипящие. Наглядное представление об условиях К. смешанных жидкостей и об условиях образования постоянно кипящих растворов могут дать прилагаемые кривые, представляющие типические формы зависимости между составом раствора и упругостью его пара при постоянной температуре.
4) Зависимость между температурой К. и составом жидкостей. Для простых тел зависимость эта определяется периодическим законом. Из числа соединений наибольшее число жидкостей приходится на область органических соединений и здесь зависимость между темп. К. и составом была предметом многих исследований. Первоначальное предположение о постоянной разности в температурах К. при постоянной разности в составе не оправдалось на опыте.В гомологических рядах разность температур К. при разнице в составе на СН2 меняется в одном и том же ряду и неодинакова в разных рядах, как это можно видеть из след. примеров:
Углеводороды n CnH2n+2 разность 1 -164° — 2 -90° 74° 3 -37° 53° 4 +1° 36° 5 +38° 37° 6 +70° 32° Хлоргидрины n CnH2n+1Cl разность 1 -22° 34° 2 +12° 34° 3 +46° 32° 4 +78° 29° 5 +107° 26° 6 +133° — Спирты n CnH2n+1OH разность 1 66° — 2 78° 12° 3 97° 19° 4 117° 20° 5 137° 20° 6 157° 19° Кислоты n CnH2nO2 разность 1 100° 19° 2 119° 22° 3 141° 22° 4 163° 21° 5 184° 20° 6 204° —
Во всяком случае, замена водорода, связанного с углеродом, метилом, всегда повышает температуру К. Иное происходит при замене водорода гидроксильного: температура К. при этом сильно понижается. Напр. метиловый алкоголь кипит при 78°, а метилэтиловый эфир при 11°; уксусная кислота кипит при 119°, а ее метиловый эфир при 56° (благодаря этому, удается иногда перегонять без разложения эфиры в том случае, когда исходные вещества при перегонке разлагаются, как напр. щавелевая или масляная кислоты).
Замена H2 — О повышает температуру К. : жирные кислоты кипят приблизительно на 40° выше, чем соответствующие кислоты; альдегиды и окиси выше, чем соответствующие углеводороды. Еще более повышается температура К. при замене Н — ОН: температура К. бутана 1°, а бутилового спирта (нормального) — 117°; темпер. К. пентана 38°, а амилового спирта 138°; темпер. К. толуола 111°, а бензилового спирта 207°. То же явление обнаруживается при переходе от одноатомных спиртов к многоатомным; этиловый спирт (С2Н5ОН) кипит при 78°, а этиленгликоль С2Н4(ОН)2 кипит при 198°; пропиловый спирт (C3H7OH) кипит при 97°, а глицерин (С3Н5(ОН)3) кипит при 290°. Изменения температуры К. при изменениях состава не выражаются простым законом постоянной разности; но из приведенных примеров, однако, видно, что одинаковые изменения в составе влекут за собой сходные изменения в температуре К. тел, при чем весьма часто и самая величина этих изменений темпер. К. колеблется в весьма узких пределах. Если различия в составе состоят лишь в неодинаковом строении, то и здесь наблюдаются различия температуры К. тем большие, чем глубже различия в строении. Напр., изомерные вещества формулы С3H6O, амиловый спирт и пропиловый альдегид, кипят при 97° и 69°; а три изомерных диметилбензола кипят: орто — 142°, мета и пара при 137°.