Энциклопедия лучших игр со словами и цифрами
Шрифт:
Условие
При посадке в автобус выстроилась очередь из n пассажиров, у каждого из которых имелся билет на одно из m мест. Первым в очереди стоял вредный старик, который, как только водитель открыл дверь, вбежал в салон и сел на случайное место (возможно, и на свое).
После этого пассажиры по очереди заняли свои места. При этом, если место кого-нибудь из пассажиров занято, он садится случайным образом на одно из свободных мест.
Какова вероятность того, что последний пассажир
Подсказка: представьте, что последний пассажир сел на свое место. Тогда в тот момент, когда один из пассажиров занимал место последнего, он мог занять и место вредного старика.
Ответ
Представим, что при определенном стечении обстоятельств последний пассажир сел не на свое место (такой случай назовем неудачным).
Тогда до прихода последнего пассажира его место было занято пассажиром S (S может быть и вредным стариком).
У пассажира S был выбор какое место занять. В рассматриваемом случае он занял место последнего пассажира. Но с этой же вероятностью он мог занять и место вредного старика, тогда в дальнейшем все пассажиры, включая и последнего, займут свои собственные места.
Получается, что каждому неудачному случаю соответствует удачный, который может произойти с той же вероятностью.
Это говорит о том, что в половине случаев распределение пассажиров по местам будет неудачным.
Упорядоченные тройки
Условие
Можно ли из любых 5 чисел, написанных в ряд, выбрать три, идущих в порядке убывания или в порядке возрастания?
Ответ
Предположим, что n и s – наибольшее и наименьшее из написанных чисел. Если между ними есть какое-либо число, то утверждение верно.
Если они располагаются рядом, то либо справа, либо слева от них есть еще 2 числа. Именно они и образуют нужную тройку чисел либо с числом n, либо с числом s.
Упорядоченные четверки
Условие
Можно ли из любых 9 различных чисел, написанных в ряд, выбрать четыре, идущих в порядке убывания или возрастания?
Подсказка: попробуйте привести пример из чисел 1, 2, 3, 4, 5, 6, 7, 8, 9, в котором условие задачи не выполняется. Для этого разбейте их на тройки, упорядочьте числа внутри каждой тройки в обратном порядке расположения самих групп, считая тройки упорядоченными по наибольшему или наименьшему в них числу.
Ответ
Напишем ряд из следующих 9 чисел: 3, 2, 1, 6, 5, 4, 9, 8, 7. Докажем, что никакие 4 числа в этой последовательности не идут ни в порядке возрастания, ни в порядке убывания. Для
этого разобьем их на тройки: 321, 654, 987.
Если какие-то 2 числа из этих девяти упорядочены по возрастанию, они будут из разных троек. Поскольку троек всего три, нельзя выбрать более 3 цифр, располагающихся в возрастающем порядке.
Если же какие-то 2 числа из этих девяти стоят в убывающем порядке, они обязательно из одной тройки. Поэтому нельзя выбрать более 3 чисел, стоящих в убывающем порядке, так как все они должны располагаться в одной тройке.
Хитрая последовательность чисел
Условие
Продолжите данную последовательность чисел:
1, 11, 21, 1112, 3112, 211213, 312213, 212223, 114213.
Подсказка: разбейте подряд идущие цифры всех чисел, начиная со второго, на пары.
Ответ
Каждое следующее число описывает предыдущее: в числе была 1 единица – 11; 2 единицы – 21; 1 единица, 1 двойка – 1112, 3 единицы, 1 двойка – 3112 и т. д.
Ошибка журналиста
Условие
Главный редактор газеты «Новость дня» Матвей Сигизмундович нашел ошибку в большой статье, которую писали вместе 3 журналиста: Арнольд Никифорович, Петр Вахтангович и Ричард Львович.
На планерке они стали оправдываться.
Арнольд Никифорович: 1. «Не я ошибся». 2. «Ошибку допустил Ричард Львович». 3. «Я написал другую часть статьи».
Петр Вахтангович: 1. «Ошибся Арнольд Никифорович». 2. «Я знаю, как исправить эту ошибку». 3. «Всем людям свойственно ошибаться».
Ричард Львович: 1. «Не я ошибся». 2. «Я с самого начала подозревал, что в статье – ошибка». 3. «Арнольд Никифорович действительно писал другую часть статьи».
Подсказка: попробуйте найти журналиста, предположение ошибки которого не приводит к противоречию, в отличие от предположения ошибки 2 других.
Ответ
Предположим, что ошибку допустил Арнольд Никифорович. Но тогда неверны сразу
2 его высказывания, что противоречит условию задачи.
Предположим, что ошибся Петр Вахтангович. Построим схему, в которой словом «нет» отмечены заведомо ложные в этом случае высказывания, а словом «да» – те, которые могут быть правдивыми.
Арнольд Никифорович: 1 – да; 2 – нет; 3 – да.
Петр Вахтангович: 1 – нет; 2 – да; 3 – да.
Ричард Львович: 1 – да; 2 – нет; 3 – да.
Схема показывает, что противоречий с условием не возникает, то есть Петр Вахтангович мог ошибиться.