Энергия и жизнь
Шрифт:
Говоря о действии ЭПЭР в биосфере, обратимся к выводам теоретиков. В обстоятельном труде «Самоорганизация в неравновесных системах» Г. Николис и И. Пригожин [М., 1979] затрагивают аспекты эволюции экосистем. Рассматривая вопросы устойчивости системы против структурной флуктуации с новой функцией (что-то типа активного мутанта в популяции), авторы приходят к выводу, что «в качестве движущей силы эволюции следует рассматривать энергетическую диссипацию» и что «процессы эволюции приводят к усилению эксплуатации окружающей среды» (с. 456). Обсуждавшийся нами энергетический принцип достаточно полно и точно соответствует этим выводам.
6.4. Энергетический принцип интенсивного развития (ЭПИР)
Говоря об ЭПЭР, мы подчеркивали возрастание способности живой системы захватывать
Однако при длительном развитии и особенно эволюции живых систем все более существенную роль должны играть процессы, направленные на улучшение качества использования энергии. И это очевидно, так как живая система в результате автокатализа быстро попадает в условия жесточайшей нехватки вещества (об организации и развитии циклов мы неоднократно упоминали на страницах этой книги). А при быстром размножении и лимитировании по веществу потребуется и быстрое отмирание, что сопровождается потерями энергии и информации и ставит популяцию в невыгодные условия. В этом случае гораздо выгоднее структуры с более длинным циклом развития. И не зря у многоклеточных организмов доля размножающихся клеток падает от 100% на ранних стадиях до 1% и ниже во взрослом состоянии.
Увеличение длительности существования считается одним из наиболее характерных проявлений эволюционного прогресса. «Подъем энергии жизнедеятельности» и, в частности, «повышение дыхательной функции», по А. Н. Северцову, является одним из главных эволюционных изменений. При этом очень важно, чтобы траты энергии на образование самой структуры и ее содержание без выполнения других функций, типа основного обмена у животных, минимизировались (или по крайней мере возрастали медленнее общих трат).
Исходя из принципа оптимальной структуры [Розен, 1969], требуется минимизация «метаболической цены», которая измеряется энергией, расходуемой организмом на образование и поддержание структуры.
Введем показатель уровня энергетического развития, характеризующий интенсивность использования энергии на единицу возобновляемой биологической структуры:
Для простых случаев (без учета возрастных структур и т. д.) между скоростью обновления биомассы µ и длительностью поколения g существует связь в виде
Здесь R — число одновременно появляющихся потомков; R = 2 при делении клеток, почковании, при последовательном появлении по одному потомку и сохранении активности родителя, т. е. в этом случае время удвоения биомассы равно длительности поколения. Для подобных случаев можно записать
В любом из вариантов энергетический принцип интенсивного развития гласит: любая живая система надорганизменного уровня развивается (эволюционирует) таким образом, что поток использованной энергии на единицу биологической структуры (за время существования этой структуры) возрастает.
Подчеркнем, что введенный показатель, отражая роль и функции структуры биосистем, остается безразмерным, и это немаловажно для сравнительного анализа (биомасса выражается через ее энергосодержание).
Остановимся подробнее на некоторых наиболее существенных выводах.
А. Рост интенсивности энергообмена (согласно ЭПИР). В биологии развития энергетический подход считается одним из наиболее важных, хотя основное внимание здесь уделялось измерениям энергозатрат отдельных особей в малоподвижном состоянии. Многочисленными исследованиями показано, что скорость теплорассеяния (часто измеряемая косвенно по скорости дыхания
где а и k — константы.
«Справедливость этого уравнения установлена для большинства групп животных, от простейших до млекопитающих. Можно сказать, что эта зависимость является эмпирическим законом, справедливым для всех животных», [3отин, Зотина, 1976, с. 49]. Величина k, меньшая единицы, хорошо соответствует известному закону поверхностей Рубнера, так как метаболизм соответствует массе, числу функционирующих клеток, а теплоотдача идет с поверхности. Это означает, что с ростом размеров организма падает величина удельной теплопродукции, так как уменьшается отношение поверхность: объем. Для нашего анализа пока больший интерес представляют данные о том, что в процессе эволюции, а не индивидуального развития коэффициент a, характеризующий в данном уравнении интенсивность энергообмена, существенно возрастает. Согласно данным, суммированным Хеммингсеном для трех, далеко отстоящих по организации групп организмов, константы уравнения равны в среднем: для одноклеточных a1 = 0,084 кал/ч; для пойкилотермных a2 = 0,69; для гомойотермных животных a3 = 19,68 кал/ч. Следовательно, интенсивность обмена возрастает от простейших к гомойотермным более чем на два порядка, более чем в 200 раз. Поддержание постоянной температуры тела для гомойотермных животных обходится примерно в 30 раз дороже по тратам на обмен, по сравнению с пойкилотермными того же размера. Казалось бы, огромная расточительность! Однако преимущества такого ароморфоза позволили гомойотермным животным занять места, недоступные для пойкилотермов. Вспомним белых медведей и песцов в Арктике или пингвинов в Антарктике; очень впечатляют с этой точки зрения сезонные миграции птиц на многие тысячи километров. Пример с птицами особенно наглядно показывает резко возросшие энергетические возможности гомойотермных животных.
К сожалению, данных по полному энергетическому обмену организмов, тем более для популяционпого или экосистемвого уровня, явно недостаточно. Приведенные выше результаты относятся главным образом к основному энергетическому обмену, который составляет лишь часть полного. Хотя наиболее вероятно их параллельное возрастание, так как за каждое новое «изобретение» организму необходимо расплачиваться прежде всего дополнительным расходом энергии. Но в целом возрастание активного обмена и есть итоговая мера прогресса.
Особенно наглядны расхождения обменов для человеческой популяции, вовлекающей в свою среду дополнительные энергетические источники. Если по уровню основного обмена человек занимает срединное положение в группе млекопитающих (согласно известной диаграмме «от мыши до слона»), то дополнительное использование и производство энергоресурсов у него в среднем в 20 раз выше. А в развитых странах и в 50–100 раз! Следовательно, согласно ЭПИР, человек в 20 раз более активен, чем млекопитающие и птицы, обладающие самыми высокими показателями энергорассеяния.
Б. Рост размеров особи и длительности поколения. В теории морфофизиологической эволюции рост продолжительности жизни и уменьшение числа потомков являются одним из показателей увеличения приспособленности животных. Для всего развития жизни в условиях нехватки вещества и постоянной накачки энергией это почти очевидно: резко снижается зависимость от лимитирования по веществу и сохраняется возможность использовать энергетические потоки.
С виду несколько противоречащим ЭПИР кажется увеличение средних размеров организмов в эволюции. Однако не следует забывать, что с увеличением размера организмов, согласно уравнению теплообмена, падает основной обмен, в то время как активный обмен возрастает. (Например, более крупные животные способны перемещаться на большие расстояния и из большего числа выбирать места расселения.)