Естествознание. Базовый уровень. 11 класс
Шрифт:
Самый главный источник энергии долгое время оставался неосвоенным. Конечно, им пользовались очень широко, но не для производства механической работы. Речь идёт о химической энергии, запасённой в таких органических веществах, как древесина, торф или каменный уголь, и способной легко превращаться в энергию тепловую. Уже далёкие предки человека были знакомы с этой энергией, когда научились использовать, а затем и добывать огонь.
Рис. 8. Водяная мельница
Все знали, что в процессе горения образуется огромное количество теплоты, но проходили десятки тысяч лет, а эту энергию использовали
Рис. 9. Ветряные мельницы
Прежде чем мы познакомимся с историей появления тепловых машин и с их устройством, задумаемся над одной проблемой. А зачем вообще для совершения работы требуются какие-либо источники энергии, ведь энергии всегда и везде достаточно? Мы уже говорили о законе сохранения энергии и знаем, что она не может никуда исчезнуть. Мы говорим, что для совершения работы требуется затратить энергию. Но что означает слово «затратить»? Ведь количество энергии после совершения этой работы останется таким же, как и было, иначе будет нарушен закон её сохранения.
Вернёмся к водяным и ветряным мельницам. Откуда берётся энергия, необходимая для того, чтобы их жернова вращались? Конечно, она складывается из кинетических энергий воды или ветра, но легко понять, что для приведения в движение мельничных жерновов этого недостаточно. Опустим водяное колесо в стоячий пруд и убедимся в том, что, хотя молекулы воды в нём непрерывно движутся, колесо вращаться не будет. Для того чтобы оно стало вращаться, необходимо, чтобы его окружала текущая вода. То же самое относится и к ветряным мельницам, а заодно и к парусам. В безветренную погоду ни жернова, ни корабль двигаться не будут, хотя о них каждое мгновение ударяются миллиарды миллиардов молекул, несущих в сумме огромную кинетическую энергию. Причина этого заключается в том, что, хотя давление воды или воздуха, оказываемое на лопасть водяного колеса, крыло ветряной мельницы или парус, может быть очень большим, оно одинаково со всех сторон. Все удары молекул уравновешиваются, и механизм остаётся неподвижным. Для того чтобы он пришёл в движение, требуется, чтобы в каждый момент времени об одну сторону его лопасти ударялось больше молекул, чем о другую, что и происходит, если вода или воздух движутся в постоянном направлении.
Таким образом, для того чтобы энергия могла совершать работу, её количество должно быть неодинаковым в различных местах. Молекулы газа или жидкости будут двигаться в различных направлениях по– разному, если между определенными точками в пространстве существует какая-либо разница. Вода течёт, потому что её уровень в различных участках русла неодинаков. Ветер дует, когда между различными местами существует перепад давлений. Песок или зерно, использовавшиеся в машинах Герона, приводили в движение различные предметы потому, что они изначально находились на разной высоте, т. е. обладали разной потенциальной энергией.
Рис. 10. Г. Гельмгольц
Если энергия в разных местах системы неодинакова, то такая система может совершить работу. В этом случае говорят, что система обладает свободной энергией. Если же энергия во всех частях системы одинакова и даже очень велика, она не сможет выполнить работу. Такую бесполезную энергию называют связанной. Понятия свободной и связанной энергии предложил в 1881 г. выдающийся немецкий физик, физиолог и психолог Герман Гельмгольц (1821–1894) (рис. 10). Когда в изолированной системе совершается работа, общая энергия этой системы не меняется, но часть её переходит из свободного состояния в связанное и, таким образом, обесценивается. С этим обстоятельством столкнулись создатели первых тепловых машин.
1. Как в прошлые века люди использовали энергию воды и воздуха для решения практических задач?
2. Что требуется для того, чтобы машины, приводимые в действие водой или воздухом, могли работать?
3. Что такое свободная и связанная энергия?
4. Что происходит с энергией в процессе совершения работы?
Проведите
§ 5 Теплота и работа
Автор третьего начала термодинамики Вальтер Нернст в часы досуга разводил карпов. Однажды кто-то глубокомысленно заметил:
– Странный выбор. Кур разводить и то интересней.
Нернст невозмутимо ответил:
– Я развожу таких животных, которые находятся в термодинамическом равновесии с окружающей средой. Разводить теплокровных – это значит обогревать на свои деньги мировое пространство.
О том, что при определённых условиях теплота может приводить что– либо в движение, люди догадывались давно. Мы уже упоминали в 10 классе об эолипиле Герона, который мог вращаться под действием силы пара, вырывающегося из его отверстий. Однако в течение долгого времени процесс преобразования теплоты в механическую работу не находил практического применения. Первые тепловые машины появились в начале XVIII в., а их широкое применение началось после того, как в 60—80-х гг. этого же века британский инженер Джеймс Уатт (1736–1819) запатентовал несколько вариантов парового двигателя экономичной конструкции [3] (рис. 11). Впоследствии, в XIX в., появились и другие виды двигателей, в том числе паровые турбины и двигатель внутреннего сгорания, который используется в современных автомобилях. Устройство этих двигателей вам уже знакомо из курса физики. Рассмотрим основной принцип работы тепловых машин, изучение которого привело к грандиозным открытиям в естествознании.
3
Приблизительно в то же время паровой двигатель был изобретён в Барнауле русским механиком Иваном Ивановичем Ползуновым (1728–1766). Однако изобретатель не дожил до пуска созданной им машины, и его изобретение не получило развития на Родине.
В основе работы всех тепловых машин лежит один общий принцип. Существует источник теплоты, который называют нагревателем. Нагреватель передаёт эту теплоту веществу, называемому рабочим телом. Обычно в качестве рабочего тела используют какой-либо газ, чаще всего воздух или водяной пар. Кинетическая энергия молекул рабочего тела увеличивается, однако этого недостаточно для того, чтобы машина могла совершить полезную работу, например поднять груз или повернуть колесо. Мы знаем, что совершать такую работу может только свободная энергия, а для того, чтобы энергия была свободной, требуется, чтобы в разных местах машины количество её было неодинаковым.
Рис. 11. Двухцилиндровая паровая машина, XIX в. (Музей индустриальной культуры. Нюрнберг) (автор фото В. Муратов)
Поэтому рабочее тело должно соприкасаться с более холодной областью, которую называют холодильником. В этом случае движение молекул рабочего тела будет направлено преимущественно от нагревателя к холодильнику, возникнет их поток, который и сможет совершить полезную работу.
Рассмотрим самую простую тепловую машину – эолипил Герона. Нагревателем в нём служит огонь, холодильником – окружающий воздух, а рабочим телом – водяной пар. В сосуде, где образуется пар, скорость его молекул гораздо больше, а давление выше, чем в окружающей атмосфере, поэтому основная часть молекул движется «к выходу». До тех пор пока в машине образуется пар, его струи будут вырываться из отверстий эолипила, приводя его во вращение. По этому же принципу работают турбины, которые, по сути, представляют собой усовершенствованное изобретение Герона. Паровой двигатель и двигатель внутреннего сгорания устроены сложнее, в них поступление теплоты от нагревателя и отдача её холодильнику могут не совпадать во времени, но принцип передачи теплоты остаётся тем же.