Эволюция Вселенной и происхождение жизни
Шрифт:
Последователи Коперника, Кеплер и Галилей, указывали, что годичная часть третьего движения совершенно не нужна. В своем Диалоге (1632) Галилей сравнивает Землю с шаром, плавающим в сосуде с водой. Когда вы начинаете вращаться «на цыпочках», держа в руках сосуд, кажется, что шар вращается в обратную сторону относительно сосуда. Но что же происходит на самом деле? Галилео отмечал, что шар без всяких усилий со своей стороны остается неподвижным относительно своего окружения. Галилео видел в поведении Земли инерцию — понятие, введенное Ньютоном и неизвестное Копернику.
Орбита Земли иллюстрирует, насколько сложно в модели Коперника учесть наблюдаемые вариации в движении Солнца по эклиптике. Центральная точка этой круговой орбиты вращается с постоянной скоростью по маленькому кругу, центр которого
Астрономия в значительной степени — наука о космических расстояниях; с этой точки зрения модель Коперника в сравнении со старой моделью имела большие преимущества. Стало возможным из наблюдений установить порядок планет и определить их относительные расстояния от Солнца. Эти расстояния можно было определить в единицах расстояния от Земли до Солнца и этой новой естественной единицей (астрономическая единица) заменить радиус Земли.
В системе Птолемея расстояние до планеты определяется довольно произвольно: важно только установить размер эпицикла относительно деферента, так чтобы видимое движение планеты соответствовало наблюдаемому. Но в гелиоцентрической модели, напротив, порядок планет и их расстояния до Солнца становятся четко определенными. Не вдаваясь в детали, заметим, что расстояние Солнце-планета можно определить в момент, когда треугольник, образованный Землей, Солнцем и планетой, становится прямоугольным.
Коперник выделил Луну из группы планет и сделал ее спутником Земли. Он определил порядок и расстояния планет, как показано в табл. 5.1 (единицей служит среднее расстояние Солнце-Земля, астрономическая единица, или а. е,). Следует подчеркнуть, что, после того как круги и эпициклы совпали с наблюдениями, Коперник не обнаружил, что планеты имеют круговые орбиты. Он вычислил минимальное, среднее и максимальное расстояние каждой планеты от Солнца. Таблица показывает, что теперь максимальное расстояние «нижележащей» планеты не равно минимальному расстоянию следующей за ней «вышележащей» планеты. В отличие от того, что предполагал Птолемей, теперь между планетными орбитами было много пустого места. В системе Коперника сфера неподвижных звезд оказалась просто гигантской, поэтому годичное движение Земли никак не могло стать причиной смещения положений звезд на небе. И так оставалось вплоть до XIX века, пока эти смещения не были наконец открыты. В табл. 5.1 следует также подчеркнуть большие значения отношений максимального к минимальному расстояний для Меркурия и Марса. Это отражает сильную вытянутость их орбит, которая позднее позволит Кеплеру сделать вывод о том, что в действительности Марс движется по эллипсу. В противоположность этому, расстояния Венеры и Земли от Солнца меняются очень мало.
Мы, как и Коперник, можем заметить, что его система была менее произвольной, чем система Птолемея. Уже только это делало гелиоцентрическую систему более привлекательной. Но еще важнее, что будущие наблюдения могли проверить предсказанный порядок планет и их расстояния.
Таблица 5.1. Значения Коперника для минимального, среднего и максимального расстояния между Солнцем и планетами.
Имя Коперника связано с двумя идеями. Говоря о коперниканской революции, мы обычно имеем в виду рождение гелиоцентрической модели в 1543 году. Естественно, что процесс окончательного установления этой новой астрономической картины Солнечной системы длился в течение двух столетий. Потребовалось много наблюдений и теоретических
Но коперниканская революция породила еще и космологический принцип Коперника, утверждающий, что мы не находимся в особом или предпочтительном положении во Вселенной. Правда, сам Коперник думал, что Солнце расположено в центре Вселенной или рядом с ним, что никак не соответствует Принципу Отсутствия Центра, провозглашенному Бруно. Тем не менее изгнание из центрального неподвижного положения Земли, получившей статус обычной планеты, стало настолько крутым изменением, что оно оправдывает название «Принцип Коперника». Космолог из родного Копернику Краковского университета Кондрад Рудницки сформулировал это более современным языком: «Вселенная, наблюдаемая с любой планеты, выглядит одинаково». Сегодня мы можем заменить слова «с любой планеты» словами «из любой галактики».
Коперник не рассуждал о мире, лежащем позади далекой материальной сферы звезд. Но он придал мощный импульс новому взгляду на звезды. Диггес родился через несколько лет после смерти Коперника, а Бруно еще позже. И они поняли, что звезды не прикреплены к сфере, а распределены в бесконечном пространстве.
Книга Коперника «De Revolutionibus» не шла нарасхват и сразу не обратила на себя большое внимание. Некоторый энтузиазм проявили те математики, кто смог продраться сквозь трудный текст. Вначале католическая церковь оставалась довольно равнодушна; возможно, это в какой то мере было обусловлено предисловием Озиан-дера, и, как мы уже упоминали, некоторые должностные лица даже поддерживали опубликование новой теории. Православная церковь считала, что движение Земли как планеты не имеет никакого значения. Первые протесты были выражены лютеранами. Только через 70 лет после публикации книги Коперника, в 1616 году, Святая палата начала действовать. В течение этого времени произошло многое. Прожили свою жизнь и уже умерли Томас Диггес и Джордано Бруно. Тихо Браге, Иоганн Кеплер и Галилео Галилей создали новую астрономию и экспериментальную физику. Был изобретен телескоп. Даже само небо, похоже, отметило коперниканскую революцию. Заметная комета 1557 года и две сверхновых звезды (последние сверхновые, наблюдавшиеся в нашей Галактике в историческое время) продемонстрировали, что небо не остается неизменным. И в середине этих событий Шекспир написал: «Есть многое на свете, друг Гораций, что и не снилось нашим мудрецам».
Вселенная Коперника все еще оставалась королевством кругов и эпициклов. Следующим шагом коперниканской революции стала замена наивного предположения о круговом движении представлением о более реалистических замкнутых орбитах. Этот решающий шаг сделал Иоганн Кеплер, для чего ему понадобились очень точные наблюдения Тихо Браге. Следующая глава посвящена их работе.
Глава 6 Открытие истинных законов движения планет
Средневековый космос подчинялся строгим взаимосвязям внутри своей сферической границы, с четкими законами кругового движения своих небесных сфер, в то время как повседневные законы и даже беспорядок господствовали вблизи Земли. Хотя геоцентрический взгляд глубоко укоренился в обществе, после Коперника границы этого взгляда начали размываться. Даже астрономы не сразу приняли гелиоцентрическую систему мира. Но все же поиск универсальных законов космического порядка и стремление к рациональному мышлению, идущее от ионийской революции, уже возродились.
Среди этих ищущих умов Тихо Браге (1546–1601) был блестящим исследователем ночного неба, собравшим прекрасный наблюдательный материал, необходимый астрономам. В течение многих лет он проводил аккуратные визуальные наблюдения планет, определяя их положение на небе с точностью в одну минуту дуги (1'), тогда как раньше астрономы удовлетворялись точностью в 10'. Тихо достиг нового уровня точности, построив свой собственный большой угломерный инструмент, работая каждую безоблачную ночь и учитывая различные систематические ошибки, влияющие на измерения положений звезд, включая рефракцию (изменение направления) светового луча в земной атмосфере (см. рис. 6.2).