Эйнштейн. Теория относительности. Пространство - это вопрос времени.
Шрифт:
Минковский скоропостижно скончался от аппендицита, оставив свою работу незавершенной. Гильберт тяжело переживал его смерть. Он заметно изменил свое отношение к физике и после смерти товарища словно продолжал его мысли: «Рассуждая письменно, физики легко пропускают важные логические ходы […], в то время как ключ к пониманию физических процессов часто находится у математиков». Или, как говорил Гильберт в неформальной обстановке, «физика становится слишком сложной, чтобы оставить ее физикам».
Сознательно или нет, математик решил осуществить программу своего старого друга. Одним из его основных достижений была аксиоматизация геометрии, а сейчас он собрался провести ту же операцию с физикой.
Почти год прошел с начала Первой мировой войны, которая была еще далека от развязки. В апреле 1915 года немцы впервые применили химическое оружие, распылив хлор около реки Ипр. Окопы накрыл желтовато-зеленый туман. В развитии теории относительности также намечалась битва, хотя и менее кровопролитная. В конце июня Эйнштейн принял приглашение Гильберта и поехал в Гёттинген, чтобы в цикле из шести лекций рассказать об общей теории относительности. Остановился он в доме у Гильберта, и оба светила провели немало оживленных научных бесед.
Ученые произвели друг на друга великолепное впечатление. «К моей большой радости, я полностью преуспел в том, чтобы убедить Гильберта и Кляйна», – поздравлял себя Эйнштейн. Гильберт также не скрывал удовлетворения: «Летом у нас побывали Зоммерфельд, Борн и Эйнштейн. Лекции последнего о теории гравитации стали особым событием».
Эйнштейну, несомненно, удалось соблазнить гёттингенских математиков своим геометрическим подходом к изучению сил тяготения. Ученый при этом не догадывался, что математики, не сговариваясь, посчитали, что он находится на распутье – в той точке, где физика становится слишком сложной, чтобы оставить ее физикам. Великий патриарх гёттингенской школы, Феликс Кляйн, сетовал: «В работе Эйнштейна есть несовершенства, которые не наносят вреда его значительным идеям, но, тем не менее, скрывают их». А Гильберт позволял себе шутки по этому поводу: «Любой гёттингенский юноша понимает в четырехмерной геометрии больше, чем Эйнштейн».
В ноябре карты были раскрыты. Толчком к этому стало признание Эйнштейна в том, что он «потерял всякую веру» в уравнения поля, которые защищал последние три года. Ученый решил вернуться к рассуждениям, которые он оставил в стороне еще в 1912 году как противоречащие ньютоновской физике. Известие, что Гильберт обнаружил ошибки в его работе и начал собственную атаку на уравнения поля, было как снег на голову. Гильберт значительно превосходил Эйнштейна в математических познаниях, и это казалось определяющим фактором для решения задачи. Однако Эйнштейн обладал немыслимым чутьем в физике.
Он ускорил работу и погрузился в бездну уравнений, которые без конца исправлял, вымарывал и писал заново, рассматривая все возможные варианты. Ученый отказался практически от любой деятельности, которая могла его отвлечь, он не отличал дня от ночи и иногда даже забывал поесть. Это упорство наконец дало результаты. Туман вокруг математического обоснования теории почти развеялся… 14 ноября в почтовый ящик Эйнштейна положили письмо со штемпелем Гёттингена – от Гильберта. Математик хвастался своим успехом:
«На самом деле до того как предложить аксиоматическое решение твоей исключительной задачи, мне бы хотелось подумать о каком-нибудь его применении, важном для физиков, вроде верного отношения между физическими константами».
Переписка между Гильбертом и Эйнштейном стала настоящим поединком предложений и предупреждений. 18 ноября Эйнштейн наконец вышел в свет. Последняя версия его теории объясняла аномальное отклонение прецессии [2 Прецессия – явление, при котором момент
Гильберт родился в прусском городе Кёнигсберге в 1862 году. Он сделал блестящую карьеру и с самого начала стал лидером своего поколения математиков. Совместно с Феликсом Кляйном он превратил Гёттингенский университет в один из мировых центров математических исследований. На Международном конгрессе математиков в Париже в 1900 году Г ильберт предъявил перечень из 23 задач, решение которых, как он считал, определяло путь развития математики в целом. Несмотря на соперничество Гильберта с Эйнштейном, у них было много общего, и ученые понравились друг другу с первых дней знакомства. Оба отказались подписать декларацию в поддержку немецкой интервенции в Первой мировой войне. У Гильберта, как и у Эйнштейна, был сын-шизофреник, и отношения между ними также были довольно сложными. Роднило этих ученых и стремление к афористичности. Гильберт говорил: «Важность научной работы можно оценить по числу предыдущих публикаций, которые та делает избыточными».
Математик дожил до 81 года и в последние годы жизни вынужден был наблюдать, как нацисты уничтожают его математическую школу, которая создавалась в течение 30 лет. Однажды на банкете в 1934 году министр культуры спросил Гильберта, насколько верны слухи о том, что немецкая математика пострадала от национал-социалистических чисток.
Ученый ответил: «Пострадала? Математики совершенно не пострадали, господин министр. Их больше просто не существует».
25 ноября 1915 года Эйнштейн представил свою версию уравнений поля Берлинской академии: «Наконец общая теория относительности получила логическую структуру». Пятью днями ранее Гильберт выступил с докладом о своей аксиоматической программе перед Гёттингенской академией наук. Кто победил в этом состязании?
Хотя Гильберт и представил результаты публике первым, в его первоначальной статье, написанной на основе лекции в Гёттингене, нет верных уравнений гравитационного поля. Они появляются только в версии, опубликованной в марте 1916 года. Следовательно, первенство принадлежит Эйнштейну. Если мы оценим результат в соответствии с поставленной задачей, то увидим, что Эйнштейн решил ее, а Гильберт достаточно сильно промахнулся.
Математик практически полностью проигнорировал экспериментальный контекст. Релятивистское прочтение гравитации было одним из аспектов его аксиоматической теории, которая охватывала не только гравитацию, но также электромагнетизм и его взаимодействие с материей. Гильберт считал, что фундаментальные уравнения физики должны быть выведены из функции, которую он назвал мировой, а ее свойства определил в паре аксиом. Его лекция имела название «Основания физики», и речь в ней шла о дисциплине, из которой теперь должна была «возникнуть такая наука, как геометрия».